Separating bichromatic point sets in the plane by restricted orientation convex hulls

被引:0
|
作者
Carlos Alegría
David Orden
Carlos Seara
Jorge Urrutia
机构
[1] Università Roma Tre,Dipartimento di Ingegneria
[2] Universidad de Alcalá,Departamento de Física y Matemáticas
[3] Universitat Politècnica de Catalunya,Departament de Matemàtiques
[4] Universidad Nacional Autónoma de Mexico,Instituto de Matemáticas
来源
关键词
Restricted orientation convex hulls; Bichromatic separability; Inclusion detection; Lower bounds; Optimization; Theory of computation; Computational geometry; Inclusion detection; Lower bounds; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We explore the separability of point sets in the plane by a restricted-orientation convex hull, which is an orientation-dependent, possibly disconnected, and non-convex enclosing shape that generalizes the convex hull. Let R and B be two disjoint sets of red and blue points in the plane, and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document} be a set of k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} lines passing through the origin. We study the problem of computing the set of orientations of the lines of O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document} for which the O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document}-convex hull of R contains no points of B. For k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} orthogonal lines we have the rectilinear convex hull. In optimal O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log n)$$\end{document} time and O(n) space, n=|R|+|B|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = \vert R \vert + \vert B \vert $$\end{document}, we compute the set of rotation angles such that, after simultaneously rotating the lines of O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document} around the origin in the same direction, the rectilinear convex hull of R contains no points of B. We generalize this result to the case where O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document} is formed by k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document} lines with arbitrary orientations. In the counter-clockwise circular order of the lines of O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document}, let αi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _i$$\end{document} be the angle required to clockwise rotate the ith line so it coincides with its successor. We solve the problem in this case in O(1/Θ·NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({1}/{\Theta }\cdot N \log N)$$\end{document} time and O(1/Θ·N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({1}/{\Theta }\cdot N)$$\end{document} space, where Θ=min{α1,…,αk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta = \min \{ \alpha _1,\ldots ,\alpha _k \}$$\end{document} and N=max{k,|R|+|B|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=\max \{k,\vert R \vert + \vert B \vert \}$$\end{document}. We finally consider the case in which O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document} is formed by k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} lines, one of the lines is fixed, and the second line rotates by an angle that goes from 0 to π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. We show that this last case can also be solved in optimal O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log n)$$\end{document} time and O(n) space, where n=|R|+|B|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = \vert R \vert + \vert B \vert $$\end{document}.
引用
收藏
页码:1003 / 1036
页数:33
相关论文
共 50 条
  • [1] Separating bichromatic point sets in the plane by restricted orientation convex hulls
    Alegria, Carlos
    Orden, David
    Seara, Carlos
    Urrutia, Jorge
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (04) : 1003 - 1036
  • [2] SEPARATING CONVEX-SETS IN THE PLANE
    CZYZOWICZ, J
    RIVERACAMPO, E
    URRUTIA, J
    ZAKS, J
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (02) : 189 - 195
  • [3] SEPARATING PLANE CONVEX-SETS
    HOPE, R
    KATCHALSKI, M
    [J]. MATHEMATICA SCANDINAVICA, 1990, 66 (01) : 44 - 46
  • [4] Separating bichromatic point sets by L-shapes
    Sheikhi, Farnaz
    Mohades, Ali
    de Berg, Mark
    Davoodi, Mansoor
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (09): : 673 - 687
  • [5] CONVEX HULLS OF PERTURBED RANDOM POINT SETS
    Calka, Pierre
    Yukich, J. E.
    [J]. ANNALS OF APPLIED PROBABILITY, 2021, 31 (04): : 1598 - 1632
  • [6] Separating Bichromatic Point Sets by Minimal Triangles with a Fixed Angle
    Moslehi, Zahra
    Bagheri, Alireza
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2017, 28 (04) : 309 - 320
  • [7] Separating bichromatic point sets by two disjoint isothetic rectangles
    Moslehi, Z.
    Bagheri, A.
    [J]. SCIENTIA IRANICA, 2016, 23 (03) : 1228 - 1238
  • [8] An Algorithm for Finding Convex Hulls of Planar Point Sets
    Mei, Gang
    Tipper, John C.
    Xu, Nengxiong
    [J]. PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 888 - 891
  • [9] On the approximation of convex hulls of finite grid point sets
    Klette, Reinhard
    [J]. PATTERN RECOGNITION LETTERS, 1983, 2 (01) : 19 - 22
  • [10] Allowable Interval Sequences and Separating Convex Sets in the Plane
    Mordechai Novick
    [J]. Discrete & Computational Geometry, 2012, 47 : 378 - 392