A reaction norm model for genomic selection using high-dimensional genomic and environmental data

被引:0
|
作者
Diego Jarquín
José Crossa
Xavier Lacaze
Philippe Du Cheyron
Joëlle Daucourt
Josiane Lorgeou
François Piraux
Laurent Guerreiro
Paulino Pérez
Mario Calus
Juan Burgueño
Gustavo de los Campos
机构
[1] University of Alabama at Birmingham,Department of Biostatistics
[2] University of Nebraska,Agronomy and Horticulture Department
[3] International Maize and Wheat Improvement Center (CIMMYT),Biometrics and Statistics Unit
[4] Station Inter-institut,Arvalis Institut du végétal
[5] Colegio de Postgraduados,Arvalis Institut du végétal
[6] IBP Université Paris Sud,Arvalis Institut du vegetal
[7] Station expérimentale,undefined
[8] Arvalis Institut du végétal,undefined
[9] Animal Breeding and Genomics Centre,undefined
[10] Wageningen UR Livestock Research,undefined
来源
关键词
Prediction Accuracy; Covariance Function; Covariance Structure; Prediction Problem; Multiplicative Operator;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:595 / 607
页数:12
相关论文
共 50 条
  • [1] A reaction norm model for genomic selection using high-dimensional genomic and environmental data
    Jarquin, Diego
    Crossa, Jose
    Lacaze, Xavier
    Du Cheyron, Philippe
    Daucourt, Joelle
    Lorgeou, Josiane
    Piraux, Francis
    Guerreiro, Laurent
    Perez, Paulino
    Calus, Mario
    Burgueno, Juan
    de los Campos, Gustavo
    [J]. THEORETICAL AND APPLIED GENETICS, 2014, 127 (03) : 595 - 607
  • [2] Comparison of biomarker selection methods in high-dimensional genomic data
    Wang, Y.
    Guo, S.
    [J]. EUROPEAN JOURNAL OF CANCER, 2022, 174 : S98 - S98
  • [3] High-dimensional feature selection for genomic datasets
    Afshar, Majid
    Usefi, Hamid
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 206
  • [4] Stable Variable Selection for High-Dimensional Genomic Data with Strong Correlations
    Sarkar, Reetika
    Manage, Sithija
    Gao, Xiaoli
    [J]. Annals of Data Science, 2024, 11 (04) : 1139 - 1164
  • [5] High-dimensional genomic feature selection with the ordered stereotype logit model
    Seffernick, Anna Eames
    Mrozek, Krzysztof
    Nicolet, Deedra
    Stone, Richard M.
    Eisfeld, Ann-Kathrin
    Byrd, John C.
    Archer, Kellie J.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [6] Variable selection for high-dimensional genomic data with censored outcomes using group lasso prior
    Lee, Kyu Ha
    Chakraborty, Sounak
    Sun, Jianguo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 112 : 1 - 13
  • [7] A variable selection approach for highly correlated predictors in high-dimensional genomic data
    Zhu, Wencan
    Levy-Leduc, Celine
    Ternes, Nils
    [J]. BIOINFORMATICS, 2021, 37 (16) : 2238 - 2244
  • [8] High-dimensional genomic data bias correction and data integration using MANCIE
    Chongzhi Zang
    Tao Wang
    Ke Deng
    Bo Li
    Sheng’en Hu
    Qian Qin
    Tengfei Xiao
    Shihua Zhang
    Clifford A. Meyer
    Housheng Hansen He
    Myles Brown
    Jun S. Liu
    Yang Xie
    X. Shirley Liu
    [J]. Nature Communications, 7
  • [9] High-dimensional genomic data bias correction and data integration using MANCIE
    Zang, Chongzhi
    Wang, Tao
    Deng, Ke
    Li, Bo
    Hu, Sheng'en
    Qin, Qian
    Xiao, Tengfei
    Zhang, Shihua
    Meyer, Clifford A.
    He, Housheng Hansen
    Brown, Myles
    Liu, Jun S.
    Xie, Yang
    Liu, X. Shirley
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [10] Application of a genomic model for high-dimensional chemometric analysis
    Shen, Xia
    Li, Ying
    Ronnegard, Lars
    Uden, Peter
    Carlborg, Orjan
    [J]. JOURNAL OF CHEMOMETRICS, 2014, 28 (07) : 548 - 557