Ramanujan-style congruences for prime level

被引:0
|
作者
Arvind Kumar
Moni Kumari
Pieter Moree
Sujeet Kumar Singh
机构
[1] Department of Mathematics,School of Mathematical Sciences
[2] Indian Institute of Technology Jammu,undefined
[3] Max-Planck-Institut für Mathematik,undefined
[4] The University of Nottingham,undefined
来源
Mathematische Zeitschrift | 2023年 / 303卷
关键词
Modular forms; Ramanujan congruences; Euler–Kronecker constants; 11F33; 11F11; 11F80; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
We establish Ramanujan-style congruences modulo certain primes ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} between an Eisenstein series of weight k, prime level p and a cuspidal newform in the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-eigenspace of the Atkin–Lehner operator inside the space of cusp forms of weight k for Γ0(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0(p)$$\end{document}. Under a mild assumption, this refines a result of Gaba–Popa. We use these congruences and recent work of Ciolan, Languasco and the third author on Euler–Kronecker constants, to quantify the non-divisibility of the Fourier coefficients involved by ℓ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell .$$\end{document} The degree of the number field generated by these coefficients we investigate using recent results on prime factors of shifted prime numbers.
引用
收藏
相关论文
共 50 条
  • [1] Ramanujan-style congruences for prime level
    Kumar, Arvind
    Kumari, Moni
    Moree, Pieter
    Singh, Sujeet Kumar
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (01)
  • [2] PRIME DIVISORS OF -GENOCCHI NUMBERS AND THE UBIQUITY OF RAMANUJAN-STYLE CONGRUENCES OF LEVEL
    Moree, Pieter
    Sgobba, Pietro
    [J]. arXiv, 2022,
  • [3] Ramanujan-style congruences of local origin
    Dummigan, Neil
    Fretwell, Daniel
    [J]. JOURNAL OF NUMBER THEORY, 2014, 143 : 248 - 261
  • [4] Prime divisors of l-Genocchi numbers and the ubiquity of Ramanujan-style congruences of level l
    Moree, Pieter
    Sgobba, Pietro
    [J]. JOURNAL OF NUMBER THEORY, 2023, 251 : 147 - 184
  • [5] CONGRUENCES FOR NUMBERS OF RAMANUJAN
    HOWARD, FT
    HAYASHI, EK
    [J]. FIBONACCI QUARTERLY, 1989, 27 (01): : 61 - 69
  • [6] Ramanujan type congruences for quotients of level 7 Klein forms
    Huber, Timothy
    Ye, Dongxi
    [J]. JOURNAL OF NUMBER THEORY, 2021, 222 : 181 - 203
  • [7] RAMANUJAN PARTITION CONGRUENCES
    HIRSCHHORN, MD
    [J]. DISCRETE MATHEMATICS, 1994, 131 (1-3) : 351 - 355
  • [8] Ramanujan-style proof of p-3(11n+7)=0 (mod 11)
    Lin, Bernard L. S.
    [J]. RAMANUJAN JOURNAL, 2017, 42 (01): : 223 - 231
  • [9] Non-Existence of Ramanujan Congruences in Modular Forms of Level Four
    Dewar, Michael
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (06): : 1284 - 1306
  • [10] Congruences for Ramanujan’s ω(q)
    Claudia Alfes
    [J]. The Ramanujan Journal, 2010, 22 : 163 - 169