Secondary cup and cap products in coarse geometry

被引:0
|
作者
Christopher Wulff
机构
[1] Georg–August–Universität Göttingen,Mathematisches Institut
来源
关键词
Coarse homology; Coarse cohomology; Secondary products; Coarse assembly; Coarse coassembly; 51F30; 55N45; 55N35; 46L85;
D O I
暂无
中图分类号
学科分类号
摘要
We construct secondary cup and cap products on coarse (co-)homology theories from given cross and slant products. They are defined for coarse spaces relative to weak generalized controlled deformation retracts. On ordinary coarse cohomology, our secondary cup product agrees with a secondary product defined by Roe. For coarsifications of topological coarse (co-)homology theories, our secondary cup and cap products correspond to the primary cup and cap products on Higson dominated coronas via transgression maps. And in the case of coarse K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {K}$$\end{document}-theory and -homology, the secondary products correspond to canonical primary products between the K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {K}$$\end{document}-theories of the stable Higson corona and the Roe algebra under assembly and co-assembly.
引用
收藏
相关论文
共 50 条
  • [1] Secondary cup and cap products in coarse geometry
    Wulff, Christopher
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2021, 8 (03)
  • [2] Cup and cap products in intersection (co)homology
    Friedman, Greg
    McClure, James E.
    [J]. ADVANCES IN MATHEMATICS, 2013, 240 : 383 - 426
  • [4] Noncommutative coarse geometry
    Banerjee, Tathagata
    Meyer, Ralf
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (03) : 1117 - 1149
  • [5] CUP PRODUCTS IN GRASSMANNIANS
    STONG, RE
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1982, 13 (01) : 103 - 113
  • [6] CAP-AND-CUP MERCURY VACUUM SEAL
    GAUNT, AJ
    REDFORD, RA
    [J]. JOURNAL OF SCIENTIFIC INSTRUMENTS, 1959, 36 (08): : 377 - 377
  • [7] Generic Coarse Geometry of Leaves
    Lopez, J. A. A.
    Candel, A.
    [J]. GENERIC COARSE GEOMETRY OF LEAVES, 2018, 2223 : 1 - 171
  • [8] Coarse geometry of evolving networks
    Weber, Melanie
    Saucan, Emil
    Jost, Jurgen
    [J]. JOURNAL OF COMPLEX NETWORKS, 2018, 6 (05) : 706 - 732
  • [9] On the Coarse Geometry of James Spaces
    Lancien, Gilles
    Petitjean, Colin
    Prochazka, Antonin
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (01): : 77 - 93
  • [10] A combinatorial approach to coarse geometry
    Cencelj, M.
    Dydak, J.
    Vavpetic, A.
    Virk, Z.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (03) : 646 - 658