Method for Stochastic Inverse Modeling of Fault Geometry and Connectivity Using Flow Data

被引:0
|
作者
Nicolas Cherpeau
Guillaume Caumon
Jef Caers
Bruno Lévy
机构
[1] Université de Lorraine,Centre de Recherches Pétrographiques et Géochimiques
[2] Stanford University,Department of Energy Resources Engineering
[3] Centre INRIA Nancy Grand-Est,undefined
来源
Mathematical Geosciences | 2012年 / 44卷
关键词
Structural modeling; Uncertainty; Topology; Inverse modeling;
D O I
暂无
中图分类号
学科分类号
摘要
This paper focuses on fault-related uncertainties in the subsurface, which can significantly affect the numerical simulation of physical processes. Our goal is to use dynamic data and process-based simulation to update structural uncertainty in a Bayesian inverse approach. We propose a stochastic fault model where the number and features of faults are made variable. In particular, this model samples uncertainties about connectivity between the faults. The stochastic three dimensional fault model is integrated within a stochastic inversion scheme in order to reduce uncertainties about fault characteristics and fault zone layout, by minimizing the mismatch between observed and simulated data.
引用
收藏
页码:147 / 168
页数:21
相关论文
共 50 条
  • [1] Method for Stochastic Inverse Modeling of Fault Geometry and Connectivity Using Flow Data
    Cherpeau, Nicolas
    Caumon, Guillaume
    Caers, Jef
    Levy, Bruno
    MATHEMATICAL GEOSCIENCES, 2012, 44 (02) : 147 - 168
  • [2] Structural geometry of Raplee Ridge monocline and thrust fault imaged using inverse Boundary Element Modeling and ALSM data
    Hilley, G. E.
    Mynatt, I.
    Pollard, D. D.
    JOURNAL OF STRUCTURAL GEOLOGY, 2010, 32 (01) : 45 - 58
  • [3] Fault tolerant data flow modeling using the generic modeling environment
    McKelvin, ML
    Sprinkle, J
    Pinello, C
    Sangiovanni-Vincentelli, A
    12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems, Proceedings, 2005, : 229 - 235
  • [4] Flow, Wind, and Stochastic Connectivity Modeling Infectious Diseases
    Udriste, C.
    Tevy, I
    Rasheed, A. S.
    COMPLEXITY, 2021, 2021 (2021)
  • [5] Stochastic estimation of hydraulic transmissivity fields using flow connectivity indicator data
    Freixas, G.
    Fernandez-Garcia, D.
    Sanchez-Vila, X.
    WATER RESOURCES RESEARCH, 2017, 53 (01) : 602 - 618
  • [6] A solution to an inverse problem of groundwater flow using stochastic finite element method
    Mardyanto, Mas Agus
    1600,
  • [7] Impact of Fracture Geometry and Topology on the Connectivity and Flow Properties of Stochastic Fracture Networks
    Zhu, Weiwei
    Khirevich, Siarhei
    Patzek, Tad W.
    WATER RESOURCES RESEARCH, 2021, 57 (07)
  • [8] Inverse modeling of unsaturated flow combined with stochastic simulation using empirical orthogonal functions (EOF)
    Kitterod, NO
    Finsterle, S
    GROUNDWATER 2000, 2000, : 103 - 104
  • [9] Inverse hydrologic modeling using stochastic growth algorithms
    Hestir, K
    Martel, SJ
    Vail, S
    Long, J
    D'Onfro, P
    Rizer, WN
    WATER RESOURCES RESEARCH, 1998, 34 (12) : 3335 - 3347
  • [10] Inverse hydrologic modeling using stochastic growth algorithms
    Hestir, K
    Martel, S
    COMPUTATIONAL METHODS IN WATER RESOURCES XI, VOL 2: COMPUTATIONAL METHODS IN SURFACE FLOW AND TRANSPORT PROBLEMS, 1996, : 3 - 10