The Nicolas and Robin inequalities with sums of two squares

被引:0
|
作者
William D. Banks
Derrick N. Hart
Pieter Moree
C. Wesley Nevans
机构
[1] University of Missouri,Department of Mathematics
[2] Max-Planck-Institut für Mathematik,undefined
来源
关键词
Nicolas inequality; Robin inequality; Sums of two squares; 11Y35; 11A25;
D O I
暂无
中图分类号
学科分类号
摘要
In 1984, G. Robin proved that the Riemann hypothesis is true if and only if the Robin inequality σ(n) < eγn log log n holds for every integer n > 5040, where σ(n) is the sum of divisors function, and γ is the Euler–Mascheroni constant. We exhibit a broad class of subsets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document} of the natural numbers such that the Robin inequality holds for all but finitely many \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \in \mathcal {S}}$$\end{document} . As a special case, we determine the finitely many numbers of the form n = a2 + b2 that do not satisfy the Robin inequality. In fact, we prove our assertions with the Nicolas inequality n/φ(n) < eγ log log n; since σ(n)/n < n/φ(n) for n > 1 our results for the Robin inequality follow at once.
引用
收藏
页码:303 / 322
页数:19
相关论文
共 50 条
  • [1] The Nicolas and Robin inequalities with sums of two squares
    Banks, William D.
    Hart, Derrick N.
    Moree, Pieter
    Nevans, C. Wesley
    [J]. MONATSHEFTE FUR MATHEMATIK, 2009, 157 (04): : 303 - 322
  • [2] Power Mean Inequalities and Sums of Squares
    Acevedo, Jose
    Blekherman, Grigoriy
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2024,
  • [3] On sums of two squares and sums of two triangular numbers
    Ewell, JA
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (04) : 1289 - 1293
  • [4] Separating inequalities for nonnegative polynomials that are not sums of squares
    Iliman, Sadik
    de Wolff, Timo
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2015, 68 : 181 - 194
  • [5] Certification of real inequalities: templates and sums of squares
    Magron, Victor
    Allamigeon, Xavier
    Gaubert, Stephane
    Werner, Benjamin
    [J]. MATHEMATICAL PROGRAMMING, 2015, 151 (02) : 477 - 506
  • [6] Certification of real inequalities: templates and sums of squares
    Victor Magron
    Xavier Allamigeon
    Stéphane Gaubert
    Benjamin Werner
    [J]. Mathematical Programming, 2015, 151 : 477 - 506
  • [7] A Problem on Sums of Two Squares
    Bombieri, Enrico
    Bourgain, Jean
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (11) : 3343 - 3407
  • [8] Sums of Two Squares Visualized
    Banerjee, Ishan
    Sarkar, Amites
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2024, 131 (07): : 558 - 565
  • [9] Sums of two squares and a cube
    Adler, A
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (06): : 574 - 575
  • [10] Custom Bell inequalities from formal sums of squares
    Barizien, Victor
    Sekatski, Pavel
    Bancal, Jean -Daniel
    [J]. QUANTUM, 2024, 8 : 1 - 24