On the equality of two-variable general functional means

被引:0
|
作者
László Losonczi
Zsolt Páles
Amr Zakaria
机构
[1] University of Debrecen,Faculty of Economics
[2] University of Debrecen,Institute of Mathematics
[3] University of Debrecen,Doctoral School of Mathematical and Computational Sciences
[4] Ain Shams University,Department of Mathematics, Faculty of Education
来源
Aequationes mathematicae | 2021年 / 95卷
关键词
Generalized functional mean; Equality problem; System of differential equations; Functional equation; 39B22; 39B52;
D O I
暂无
中图分类号
学科分类号
摘要
Given two functions f,g:I→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f,g:I\rightarrow \mathbb {R}$$\end{document} and a probability measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on the Borel subsets of [0, 1], the two-variable mean Mf,g;μ:I2→I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{f,g;\mu }:I^2\rightarrow I$$\end{document} is defined by Mf,g;μ(x,y):=(fg)-1∫01f(tx+(1-t)y)dμ(t)∫01g(tx+(1-t)y)dμ(t)(x,y∈I).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} M_{f,g;\mu }(x,y) :=\bigg (\frac{f}{g}\bigg )^{-1}\left( \frac{\int _0^1 f\big (tx+(1-t)y\big )d\mu (t)}{\int _0^1 g\big (tx+(1-t)y\big )d\mu (t)}\right) \quad (x,y\in I). \end{aligned}$$\end{document}This class of means includes quasiarithmetic as well as Cauchy and Bajraktarević means. The aim of this paper is, for a fixed probability measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, to study their equality problem, i.e., to characterize those pairs of functions (f, g) and (F, G) for which Mf,g;μ(x,y)=MF,G;μ(x,y)(x,y∈I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} M_{f,g;\mu }(x,y)=M_{F,G;\mu }(x,y) \quad (x,y\in I) \end{aligned}$$\end{document}holds. Under at most sixth-order differentiability assumptions for the unknown functions f, g and F, G, we obtain several necessary conditions in terms of ordinary differential equations for the solutions of the above equation. For two particular measures, a complete description is obtained. These latter results offer eight equivalent conditions for the equality of Bajraktarević means and of Cauchy means.
引用
收藏
页码:1011 / 1036
页数:25
相关论文
共 50 条