Given two functions f,g:I→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f,g:I\rightarrow \mathbb {R}$$\end{document} and a probability measure μ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu $$\end{document} on the Borel subsets of [0, 1], the two-variable mean Mf,g;μ:I2→I\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M_{f,g;\mu }:I^2\rightarrow I$$\end{document} is defined by Mf,g;μ(x,y):=(fg)-1∫01f(tx+(1-t)y)dμ(t)∫01g(tx+(1-t)y)dμ(t)(x,y∈I).\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} M_{f,g;\mu }(x,y) :=\bigg (\frac{f}{g}\bigg )^{-1}\left( \frac{\int _0^1 f\big (tx+(1-t)y\big )d\mu (t)}{\int _0^1 g\big (tx+(1-t)y\big )d\mu (t)}\right) \quad (x,y\in I). \end{aligned}$$\end{document}This class of means includes quasiarithmetic as well as Cauchy and Bajraktarević means. The aim of this paper is, for a fixed probability measure μ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu $$\end{document}, to study their equality problem, i.e., to characterize those pairs of functions (f, g) and (F, G) for which Mf,g;μ(x,y)=MF,G;μ(x,y)(x,y∈I)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} M_{f,g;\mu }(x,y)=M_{F,G;\mu }(x,y) \quad (x,y\in I) \end{aligned}$$\end{document}holds. Under at most sixth-order differentiability assumptions for the unknown functions f, g and F, G, we obtain several necessary conditions in terms of ordinary differential equations for the solutions of the above equation. For two particular measures, a complete description is obtained. These latter results offer eight equivalent conditions for the equality of Bajraktarević means and of Cauchy means.