Subset Feedback Vertex Set in Chordal and Split Graphs

被引:0
|
作者
Geevarghese Philip
Varun Rajan
Saket Saurabh
Prafullkumar Tale
机构
[1] Chennai Mathematical Institute and UMI ReLaX,Department of Informatics
[2] Chennai Mathematical Institute,undefined
[3] The Institute Of Mathematical Sciences,undefined
[4] HBNI and UMI ReLaX,undefined
[5] University of Bergen,undefined
[6] The Institute Of Mathematical Sciences,undefined
[7] HBNI,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Subset feedback vertex set; Chordal and split graphs; Parameterized complexity;
D O I
暂无
中图分类号
学科分类号
摘要
In the Subset Feedback Vertex Set (Subset-FVS) problem the input is a graph G on n vertices, a subset T of vertices of G called the “terminal” vertices, and an integer k. The task is to determine whether there exists a subset of vertices of cardinality at most k which together intersect all cycles which pass through the terminals. Subset-FVS generalizes several well studied problems including Feedback Vertex Set and Multiway Cut. This problem is known to be NP-Complete, even in split graphs. Cygan et al. (SIAM J Discrete Math 27(1):290–309, 2013) proved that Subset-FVS is fixed parameter tractable (FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {FPT}$$\end{document}) in general graphs when parameterized by k. In split graphs a simple observation reduces the problem to an equivalent instance of the 3-Hitting Set problem with the same solution size. This directly implies, for Subset-FVSrestricted to split graphs, (i) an FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {FPT}$$\end{document} algorithm which solves the problem in O⋆(2.076k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}^{\star } (2.076^k)$$\end{document} time (The O⋆()\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}^{\star } ()$$\end{document} notation hides polynomial factors.) (Wahlström in Algorithms, measures and upper bounds for satisfiability and related problems. Ph.D. Thesis, Department of Computer and Information Science, Linköpings universitet, 2007), and (ii) a kernel of size O(k3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(k^3)$$\end{document}. We improve both these results for Subset-FVS on split graphs; we derive (i) a kernel of size O(k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(k^2)$$\end{document} which is the best possible unless NP⊆coNP/poly\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {NP}\subseteq {\mathsf {coNP}}/{\textsf {poly}}$$\end{document}, and (ii) an algorithm which solves the problem in time O∗(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}^*(2^k)$$\end{document}. Our algorithm, in fact, solves Subset-FVS on the more general class of chordal graphs, also in O∗(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}^*(2^k)$$\end{document} time. To the best of our knowledge, the fastest known exact algorithm for Subset-FVS on chordal graphs is based on the 3-Hitting Set algorithm of Fomin et al. (JACM 66(2):8, 2019) which runs in O∗(1.5182n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}^*(1.5182^n)$$\end{document} time. Applying the results of Fomin et al. (2019) to our FPT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {FPT}$$\end{document} algorithm yields two exact exponential-time algorithms for Subset-FVS on chordal graphs: a randomized algorithm which runs in O∗(1.5n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}^*(1.5^{n})$$\end{document} time, and a deterministic algorithm which runs in O∗((1.5+ε)n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}^*((1.5+\varepsilon )^{n})$$\end{document} time for any fixed ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}.
引用
收藏
页码:3586 / 3629
页数:43
相关论文
共 50 条
  • [1] Subset Feedback Vertex Set in Chordal and Split Graphs
    Philip, Geevarghese
    Rajan, Varun
    Saurabh, Saket
    Tale, Prafullkumar
    [J]. ALGORITHMICA, 2019, 81 (09) : 3586 - 3629
  • [2] Exact algorithms for restricted subset feedback vertex set in chordal and split graphs
    Bai, Tian
    Xiao, Mingyu
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 984
  • [3] Subset feedback vertex sets in chordal graphs
    Golovach, Petr A.
    Heggernes, Pinar
    Kratsch, Dieter
    Saei, Reza
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2014, 26 : 7 - 15
  • [4] Computing a Minimum Subset Feedback Vertex Set on Chordal Graphs Parameterized by Leafage
    Papadopoulos, Charis
    Tzimas, Spyridon
    [J]. COMBINATORIAL ALGORITHMS (IWOCA 2022), 2022, 13270 : 466 - 479
  • [5] Computing a Minimum Subset Feedback Vertex Set on Chordal Graphs Parameterized by Leafage
    Papadopoulos, Charis
    Tzimas, Spyridon
    [J]. ALGORITHMICA, 2024, 86 (03) : 874 - 906
  • [6] Exact and Parameterized Algorithms for Restricted Subset Feedback Vertex Set in Chordal Graphs
    Bai, Tian
    Xiao, Mingyu
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022, 2022, 13571 : 249 - 261
  • [7] Computing a Minimum Subset Feedback Vertex Set on Chordal Graphs Parameterized by Leafage
    Charis Papadopoulos
    Spyridon Tzimas
    [J]. Algorithmica, 2024, 86 : 874 - 906
  • [8] Subset feedback vertex set on graphs of bounded independent set size
    Papadopoulos, Charis
    Tzimas, Spyridon
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 814 : 177 - 188
  • [9] Classifying Subset Feedback Vertex Set for H-Free Graphs
    Paesani, Giacomo
    Paulusma, Daniel
    Rzazewski, Pawel
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2022), 2022, 13453 : 412 - 424
  • [10] Classifying subset feedback vertex set for H-free graphs
    Paesani, Giacomo
    Paulusma, Daniel
    Rzazewski, Pawel
    [J]. THEORETICAL COMPUTER SCIENCE, 2024, 1003