Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems

被引:0
|
作者
Felipe Álvarez
Jérôme Bolte
J. Frédéric Bonnans
Francisco J. Silva
机构
[1] Universidad de Chile,Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (CNRS UMI 2807)
[2] TSE (GREMAQ,INRIA
[3] University Toulouse I),Saclay and CMAP
[4] École Polytechnique,Dipartimento di Matematica Guido Castelnuovo
[5] Università Roma La Sapienza,undefined
来源
Mathematical Programming | 2012年 / 135卷
关键词
Optimal control; Interior-point algorithms; Sensitivity; Expansion of value function and solutions; 49M37; 90C51; 49K40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a quadratic optimal control problem governed by a nonautonomous affine ordinary differential equation subject to nonnegativity control constraints. For a general class of interior penalty functions, we provide a first order expansion for the penalized states and adjoint states around the state and adjoint state of the original problem. Our main argument relies on the following fact: if the optimal control satisfies strict complementarity conditions for its Hamiltonian except for a set of times with null Lebesgue measure, the functional estimates for the penalized optimal control problem can be derived from the estimates of a related finite dimensional problem. Our results provide several types of efficiency measures of the penalization technique: error estimates of the control for Ls norms (s in [1, +∞]), error estimates of the state and the adjoint state in Sobolev spaces W1,s (s in [1, +∞)) and also error estimates for the value function. For the L1 norm and the logarithmic penalty, the sharpest results are given, by establishing an error estimate for the penalized control of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(\varepsilon|\log\epsilon|)}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon >0 }$$\end{document} is the (small) penalty parameter.
引用
收藏
页码:473 / 507
页数:34
相关论文
共 50 条