Products of pairs of commuting d-tuples of Banach space operators satisfying an m-isometric property

被引:0
|
作者
B. P. Duggal
机构
[1] University of Niš,Faculty of Sciences and Mathematics
关键词
Banach space; Left/right multiplication operator; -isometric commuting ; -tuples of operators; Products of operators; 47A05; 47A55; Secondary 47A11; 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
If A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}$$\end{document} (=(A1,…,Ad)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=(A_1, \ldots , A_d)$$\end{document}), B,S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}, {\mathbb S}$$\end{document} and T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document} are commuting d-tuples of Banach space operators in B(X)d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B({{\mathcal {X}}})^d$$\end{document}, multiplication A∙S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}\bullet {\mathbb S}$$\end{document}, similarly B∙T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}\bullet {\mathbb T}$$\end{document}, is defined by coordinatewise multiplication, S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb S}$$\end{document} commutes with A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}$$\end{document}, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}$$\end{document} and T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document}, T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb T}$$\end{document} commutes with B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {B}$$\end{document}, the pair (A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbb {A},\mathbb {B})$$\end{document} is m-isometric and the pair (Si,Ti)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S_i,T_i)$$\end{document} is ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_i$$\end{document}-isometric for all 1≤i≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le d$$\end{document}, then the pair (A∙S,B∙T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbb {A}\bullet {\mathbb S},\mathbb {B}\bullet {\mathbb T})$$\end{document} is (m+∑i=1dni-d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+\sum _{i=1}^d n_i -d)$$\end{document}-isometric.
引用
收藏
页码:291 / 298
页数:7
相关论文
共 20 条
  • [1] Products of pairs of commuting d-tuples of Banach space operators satisfying an m-isometric property
    Duggal, B. P.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (01) : 291 - 298
  • [2] Isometric, Symmetric and Isosymmetric Commuting d-Tuples of Banach Space Operators
    B. P. Duggal
    I. H. Kim
    [J]. Results in Mathematics, 2023, 78
  • [3] Isometric, Symmetric and Isosymmetric Commuting d-Tuples of Banach Space Operators
    Duggal, B. P.
    Kim, I. H.
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [4] m-isometric commuting tuples of operators on a Hilbert space
    Gleason, Jim
    Richter, Stefan
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (02) : 181 - 196
  • [5] m-Isometric Commuting Tuples of Operators on a Hilbert Space
    Jim Gleason
    Stefan Richter
    [J]. Integral Equations and Operator Theory, 2006, 56 : 181 - 196
  • [6] EXAMPLES OF m-ISOMETRIC TUPLES OF OPERATORS ON A HILBERT SPACE
    Gu, Caixing
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) : 225 - 251
  • [7] On (A, m)-isometric commuting tuples of operators on a Hilbert space
    Ghribi, Salima
    Jeridi, Nader
    Rabaoui, Rchid
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (11): : 2097 - 2116
  • [8] A Trace Inequality for Commuting d-Tuples of Operators
    Gadadhar Misra
    Paramita Pramanick
    Kalyan B. Sinha
    [J]. Integral Equations and Operator Theory, 2022, 94
  • [9] A Trace Inequality for Commuting d-Tuples of Operators
    Misra, Gadadhar
    Pramanick, Paramita
    Sinha, Kalyan B.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (02)
  • [10] On (m, C)-Isometric Commuting Tuples of Operators on a Hilbert Space
    Mahmoud, Sid Ahmed Ould Ahmed
    Cho, Muneo
    Lee, Ji Eun
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (02)