Soft-Constrained Neural Networks for Nonparametric Density Estimation

被引:0
|
作者
Edmondo Trentin
机构
[1] DIISM (Università di Siena),
来源
Neural Processing Letters | 2018年 / 48卷
关键词
Density estimation; Nonparametric estimation; Unsupervised learning; Constrained learning; Multilayer perceptron;
D O I
暂无
中图分类号
学科分类号
摘要
The paper introduces a robust connectionist technique for the empirical nonparametric estimation of multivariate probability density functions (pdf) from unlabeled data samples (still an open issue in pattern recognition and machine learning). To this end, a soft-constrained unsupervised algorithm for training a multilayer perceptron (MLP) is proposed. A variant of the Metropolis–Hastings algorithm (exploiting the very probabilistic nature of the present MLP) is used to guarantee a model that satisfies numerically Kolmogorov’s second axiom of probability. The approach overcomes the major limitations of the established statistical and connectionist pdf estimators. Graphical and quantitative experimental results show that the proposed technique can offer estimates that improve significantly over parametric and nonparametric approaches, regardless of (1) the complexity of the underlying pdf, (2) the dimensionality of the feature space, and (3) the amount of data available for training.
引用
收藏
页码:915 / 932
页数:17
相关论文
共 50 条
  • [1] Soft-Constrained Neural Networks for Nonparametric Density Estimation
    Trentin, Edmondo
    [J]. NEURAL PROCESSING LETTERS, 2018, 48 (02) : 915 - 932
  • [2] Soft-Constrained Nonparametric Density Estimation with Artificial Neural Networks
    Trentin, Edmondo
    [J]. ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, 2016, 9896 : 68 - 79
  • [4] Hard-constrained versus soft-constrained parameter estimation
    Benavoli, A.
    Chisci, L.
    Farina, A.
    Ortenzi, L.
    Zappa, G.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (04) : 1224 - 1239
  • [5] Soft-constrained inference for Named Entity Recognition
    Fersini, E.
    Messina, E.
    Felici, G.
    Roth, D.
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2014, 50 (05) : 807 - 819
  • [6] Soft-Constrained Nonnegative Matrix Factorization via Normalization
    Lan, Long
    Guan, Naiyang
    Zhang, Xiang
    Tao, Dacheng
    Luo, Zhigang
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3025 - 3030
  • [7] Soft-Constrained Alternative Robust MPC: Experimental Study
    Oravec, Juraj
    Paksiova, Daniela
    Bakosova, Monika
    Fikar, Miroslav
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 11379 - 11384
  • [8] Soft clustering for nonparametric probability density function estimation
    Lopez-Rubio, Ezequiel
    Miguel Ortiz-de-Lazcano-Lobato, Juan
    [J]. PATTERN RECOGNITION LETTERS, 2008, 29 (16) : 2085 - 2091
  • [9] Robust Nonparametric Probability Density Estimation by Soft Clustering
    Lopez-Rubio, Ezequiel
    Miguel Ortiz-de-Lazcano-Lobato, Juan
    Lopez-Rodriguez, Domingo
    del Carmen Vargas-Gonzalez, Maria
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT I, 2008, 5163 : 155 - 164
  • [10] Fusion of hard and soft information in nonparametric density estimation
    Royset, Johannes O.
    Wets, Roger J-B
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 247 (02) : 532 - 547