Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf

被引:0
|
作者
Lenaerts J.T.M. [1 ,2 ]
Lhermitte S. [2 ,3 ]
Drews R. [4 ]
Ligtenberg S.R.M. [1 ]
Berger S. [4 ]
Helm V. [5 ]
Smeets C.J.P.P. [1 ]
Broeke M.R.V.D. [1 ]
Van De Berg W.J. [1 ]
Van Meijgaard E. [6 ]
Eijkelboom M. [1 ]
Eisen O. [5 ,7 ]
Pattyn F. [4 ]
机构
[1] Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht
[2] Department of Earth and Environmental Sciences, KU Leuven, Leuven
[3] Department of Geoscience and Remote Sensing, Delft University of Technology, Delft
[4] Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels
[5] Alfred Wegener Institute, Bremerhaven
[6] Royal Netherlands Meteorological Institute, De Bilt
[7] Department of Geosciences, University of Bremen, Bremen
关键词
D O I
10.1038/nclimate3180
中图分类号
学科分类号
摘要
Surface melt and subsequent firn air depletion can ultimately lead to disintegration of Antarctic ice shelves causing grounded glaciers to accelerate and sea level to rise. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line, which in the recent past has led to the disintegration of the most northerly ice shelves. Here, we provide observational and model evidence that this process also occurs over an East Antarctic ice shelf, where meltwater-induced firn air depletion is found in the grounding zone. Unlike the Antarctic Peninsula, where foehn events originate from episodic interaction of the circumpolar westerlies with the topography, in coastal East Antarctica high temperatures are caused by persistent katabatic winds originating from the ice sheet's interior. Katabatic winds warm and mix the air as it flows downward and cause widespread snow erosion, explaining >3 K higher near-surface temperatures in summer and surface melt doubling in the grounding zone compared with its surroundings. Additionally, these winds expose blue ice and firn with lower surface albedo, further enhancing melt. The in situ observation of supraglacial flow and englacial storage of meltwater suggests that ice-shelf grounding zones in East Antarctica, like their Antarctic Peninsula counterparts, are vulnerable to hydrofracturing. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
引用
收藏
页码:58 / 62
页数:4
相关论文
共 47 条
  • [1] Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf
    Lenaerts, J. T. M.
    Lhermitte, S.
    Drews, R.
    Ligtenberg, S. R. M.
    Berger, S.
    Helm, V.
    Smeets, C. J. P. P.
    van den Broeke, M. R.
    van de Berg, W. J.
    van Meijgaard, E.
    Eijkelboom, M.
    Eisen, O.
    Pattyn, F.
    [J]. NATURE CLIMATE CHANGE, 2017, 7 (01) : 58 - +
  • [2] Lateral meltwater transfer across an Antarctic ice shelf
    Dell, Rebecca
    Arnold, Neil
    Willis, Ian
    Banwell, Alison
    Williamson, Andrew
    Pritchard, Hamish
    Orr, Andrew
    [J]. CRYOSPHERE, 2020, 14 (07): : 2313 - 2330
  • [3] Antarctic ice shelf potentially stabilized by export of meltwater in surface river
    Robin E. Bell
    Winnie Chu
    Jonathan Kingslake
    Indrani Das
    Marco Tedesco
    Kirsty J. Tinto
    Christopher J. Zappa
    Massimo Frezzotti
    Alexandra Boghosian
    Won Sang Lee
    [J]. Nature, 2017, 544 : 344 - 348
  • [4] Antarctic ice shelf potentially stabilized by export of meltwater in surface river
    Bell, Robin E.
    Chu, Winnie
    Kingslake, Jonathan
    Das, Indrani
    Tedesco, Marco
    Tinto, Kirsty J.
    Zappa, Christopher J.
    Frezzotti, Massimo
    Boghosian, Alexandra
    Lee, Won Sang
    [J]. NATURE, 2017, 544 (7650) : 344 - +
  • [5] Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf
    Garabato, Alberto C. Naveira
    Forryan, Alexander
    Dutrieux, Pierre
    Brannigan, Liam
    Biddle, Louise C.
    Heywood, Karen J.
    Jenkins, Adrian
    Firing, Yvonne L.
    Kimura, Satoshi
    [J]. NATURE, 2017, 542 (7640) : 219 - 222
  • [6] Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds
    Archer, Stephen D. J.
    McDonald, Ian R.
    Herbold, Craig W.
    Lee, Charles K.
    Cary, Craig S.
    [J]. FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [7] Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf
    Alberto C. Naveira Garabato
    Alexander Forryan
    Pierre Dutrieux
    Liam Brannigan
    Louise C. Biddle
    Karen J. Heywood
    Adrian Jenkins
    Yvonne L. Firing
    Satoshi Kimura
    [J]. Nature, 2017, 542 : 219 - 222
  • [8] Dynamic Response to Ice Shelf Basal Meltwater Relevant to Explain Observed Sea Ice Trends Near the Antarctic Continental Shelf
    Huneke, Wilma G. C.
    Hobbs, William R.
    Klocker, Andreas
    Naughten, Kaitlin A.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (24)
  • [9] Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet
    Simkins L.M.
    Anderson J.B.
    Greenwood S.L.
    Gonnermann H.M.
    Prothro L.O.
    Halberstadt A.R.W.
    Stearns L.A.
    Pollard D.
    DeConto R.M.
    [J]. Nature Geoscience, 2017, 10 (9) : 691 - 697
  • [10] Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet
    Simkins, Lauren M.
    Anderson, John B.
    Greenwood, Sarah L.
    Gonnermann, Helge M.
    Prothro, Lindsay O.
    Halberstadt, Anna Ruth W.
    Stearns, Leigh A.
    Pollard, David
    DeConto, Robert M.
    [J]. NATURE GEOSCIENCE, 2017, 10 (09) : 691 - +