Computing All Immobilizing Grasps of a Simple Polygon with Few Contacts

被引:0
|
作者
Jae-Sook Cheong
Herman J. Haverkort
A. Frank van der Stappen
机构
[1] Department of Information and Computing Sciences,
[2] Utrecht University,undefined
[3] P.O. Box 80089,undefined
[4] 3508 TB Utrecht,undefined
[5] Department of Mathematics and Computing Science,undefined
[6] Eindhoven University of Technology,undefined
[7] P.O. Box 513,undefined
[8] 5600 MB Eindhoven,undefined
来源
Algorithmica | 2006年 / 44卷
关键词
Immobility; Grasp; Fixturing; Wrench; Form closure; Second-order immobility; Positive basis;
D O I
暂无
中图分类号
学科分类号
摘要
We study the output-sensitive computation of all the combinations of edges and concave vertices of a simple polygon that allow an immobilizing grasp with less than four frictionless point contacts. More specifically, if n is the number of edges, and m is the number of concave vertices of the polygon, we show how to compute: in O(m4/3 log1/3 m + K) time, all K combinations that allow a form-closure grasp with two contacts; in O(n2 log4 m + K) time, all K combinations that allow a form-closure grasp with three contacts; in O(n log4 m + (nm)2/3 log2+ε m + K) time (for any constant ε > 0), all K combinations of one concave vertex and one edge that allow a grasp with one contact on the vertex and one contact on the interior of the edge, satisfying Czyzowicz's weaker conditions for immobilization; in O(n2 log3 n + K) time, all K combinations of three edges that allow a grasp with one contact on the interior of each edge, satisfying Czyzowicz's weaker conditions for immobilization.
引用
收藏
页码:117 / 136
页数:19
相关论文
共 42 条
  • [1] On computing all immobilizing grasps of a simple polygon with few contacts
    Cheong, JS
    Haverkort, HJ
    van der Stappen, AF
    [J]. ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2003, 2906 : 260 - 269
  • [2] Computing all immobilizing grasps of a simple polygon with few contacts
    Cheong, JS
    Haverkort, HJ
    van der Stappen, AF
    [J]. ALGORITHMICA, 2006, 44 (02) : 117 - 136
  • [3] Computing immobilizing grasps of polygonal parts
    van der Stappen, AF
    Wentink, C
    Overmars, MH
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2000, 19 (05): : 467 - 479
  • [4] On computing immobilizing grasps of 3-D curved objects
    Ding, D
    Liu, YH
    Wang, MY
    [J]. 2001 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION: INTEGRATING INTELLIGENT MACHINES WITH HUMANS FOR A BETTER TOMORROW, 2001, : 11 - 16
  • [5] Computing the Visibility Polygon Using Few Variables
    Barba, Luis
    Korman, Matias
    Langerman, Stefan
    Silveira, Rodrigo I.
    [J]. ALGORITHMS AND COMPUTATION, 2011, 7074 : 70 - +
  • [6] Computing a visibility polygon using few variables
    Barba, Luis
    Korman, Matias
    Langerman, Stefan
    Silveira, Rodrigo I.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (09): : 918 - 926
  • [7] COMPUTING THE GEODESIC CENTER OF A SIMPLE POLYGON
    POLLACK, R
    SHARIR, M
    ROTE, G
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (06) : 611 - 626
  • [8] COMPUTING THE LINK CENTER OF A SIMPLE POLYGON
    LENHART, W
    POLLACK, R
    SACK, J
    SEIDEL, R
    SHARIR, M
    SURI, S
    TOUSSAINT, G
    WHITESIDES, S
    YAP, C
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) : 281 - 293
  • [9] COMPUTING THE LONGEST DIAGONAL OF A SIMPLE POLYGON
    AGGARWAL, A
    SURI, S
    [J]. INFORMATION PROCESSING LETTERS, 1990, 35 (01) : 13 - 18
  • [10] COMPUTING EXTERNAL FARTHEST NEIGHBORS FOR A SIMPLE POLYGON
    AGARWAL, PK
    AGGARWAL, A
    ARONOV, B
    KOSARAJU, SR
    SCHIEBER, B
    SURI, S
    [J]. DISCRETE APPLIED MATHEMATICS, 1991, 31 (02) : 97 - 111