Numerical methods for a class of nonlinear integro-differential equations

被引:0
|
作者
R. Glowinski
L. Shiau
M. Sheppard
机构
[1] University of Houston,Department of Mathematics
[2] University of Houston,Department of Mathematics
[3] Clear Lake,undefined
来源
Calcolo | 2013年 / 50卷
关键词
Integro-differential equations; Finite differences; Symmetrized operator-splitting schemes; 65M99; 65M20; 65L06;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous article (Glowinski, J. Math. Anal. Appl. 41, 67–96, 1973) the first author discussed several methods for the numerical solution of nonlinear equations of the integro-differential type with periodic boundary conditions. In this article we discuss an alternative methodology largely based on the Strang’s symmetrized operator-splitting scheme. Several numerical experiments suggest that the new method is robust and accurate. It is also easier to implement than the various methods discussed by Glowinski in J. Math. Anal. Appl. 41, 67–96 (1973).
引用
收藏
页码:17 / 33
页数:16
相关论文
共 50 条
  • [1] Numerical methods for a class of nonlinear integro-differential equations
    Glowinski, R.
    Shiau, L.
    Sheppard, M.
    CALCOLO, 2013, 50 (01) : 17 - 33
  • [2] NUMERICAL METHODS FOR NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    FELDSTEI.A
    SOPKA, JR
    SIAM REVIEW, 1969, 11 (01) : 111 - &
  • [3] CLASS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    LEUNG, KV
    MANGERON, D
    OGUZTORE.MN
    STEIN, RB
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (05): : 699 - 705
  • [4] On a Class of Nonlinear Integro-Differential Equations
    Khachatryan K.A.
    Petrosyan H.S.
    Siberian Advances in Mathematics, 2022, 32 (4) : 250 - 268
  • [5] NUMERICAL-METHODS FOR NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    FELDSTEIN, A
    SOPKA, JR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (04) : 826 - 846
  • [6] Dissipativity of θ-methods for a class of nonlinear neutral delay integro-differential equations
    Wang, L.
    Ding, X.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (15) : 2029 - 2046
  • [7] CLASS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS .3.
    LEUNG, KV
    MANGERON, D
    OGUZTORE.MN
    STEIN, RB
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1973, 59 (06): : 492 - 499
  • [8] CLASS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS .1.
    LEUNG, KV
    MANGERON, D
    OGUZTORE.MN
    STEIN, RB
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (04): : 522 - 528
  • [9] Projection methods for approximate solution of a class of nonlinear Fredholm integro-differential equations
    Mandal, Moumita
    Kayal, Arnab
    Nelakanti, Gnaneshwar
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 49 - 76
  • [10] Projection methods for approximate solution of a class of nonlinear Fredholm integro-differential equations
    Mandal, Moumita
    Kayal, Arnab
    Nelakanti, Gnaneshwar
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 49 - 76