Particle Filtering Algorithms for Tracking a Maneuvering Target Using a Network of Wireless Dynamic Sensors

被引:0
|
作者
Joaquín Míguez
Antonio Artés-Rodríguez
机构
[1] Universidad Carlos III de Madrid,Departamento de Teoría de la Señal y Comunicaciones
关键词
Sensor Network; Wireless Sensor Network; Particle Filter; Target Detection; Data Fusion;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the problem of tracking a maneuvering target using a wireless sensor network. We assume that the sensors are binary (they transmit '1' for target detection and '0' for target absence) and capable of motion, in order to enable the tracking of targets that move over large regions. The sensor velocity is governed by the tracker, but subject to random perturbations that make the actual sensor locations uncertain. The binary local decisions are transmitted over the network to a fusion center that recursively integrates them in order to sequentially produce estimates of the target position, its velocity, and the sensor locations. We investigate the application of particle filtering techniques (namely, sequential importance sampling, auxiliary particle filtering and cost-reference particle filtering) in order to efficiently perform data fusion, and propose new sampling schemes tailored to the problem under study. The validity of the resulting algorithms is illustrated by means of computer simulations.
引用
收藏
相关论文
共 50 条
  • [1] Particle filtering algorithms for tracking a maneuvering target using a Network of wireless dynamic sensors
    Míguez, Joaquín
    Artés-Rodríguez, Antonio
    [J]. Eurasip Journal on Applied Signal Processing, 2006, 2006
  • [2] Particle filtering algorithms for tracking a maneuvering target using a network of wireless dynamic sensors
    Miguez, Joaquin
    Artes-Rodriguez, Antonio
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006, 2006 (1)
  • [3] Monte Carlo algorithms for tracking a maneuvering target using a network of mobile sensors
    Míguez, J
    Artés-Rodríguez, A
    [J]. IEEE CAMSAP 2005: First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, : 89 - 92
  • [4] Maneuvering target tracking using cost reference particle filtering
    Bugallo, MF
    Xu, SS
    Míguez, J
    Djuric, PM
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 968 - 971
  • [5] PARTICLE FILTERING FOR MANEUVERING TARGET TRACKING IN CLUTTER
    Yang, Xiaojun
    Shi, Kunlin
    Guo, Jinping
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON APPLIED ELECTROSTATICS, 2008, : 188 - 191
  • [6] Minimax particle filtering for tracking a highly maneuvering target
    Lim, Jaechan
    Kim, Hun-Seok
    Park, Hyung-Min
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (02) : 636 - 651
  • [7] Mixed particle filtering for maneuvering target tracking in clutter
    Yang, Xiaojun
    Zhao, Xiangmo
    [J]. 2008 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING CONTROL & AUTOMATION, VOLS 1 AND 2, 2008, : 557 - 562
  • [8] Maneuvering Target Tracking in Dense Clutter Based on Particle Filtering
    YANG XiaojunaXING KeyibFENG Xinglea aSchool of Information EngineeringChangan UniversityXian China bThe National Key Laboratory for Manufacturing System EngineeringXian Jiaotong UniversityXian China
    [J]. Chinese Journal of Aeronautics, 2011, 24 (02) : 171 - 180
  • [9] Particle filtering for target tracking with mobile sensors
    Li, Yao
    Djuric, Petar M.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 1101 - +
  • [10] Maneuvering Target Tracking in Dense Clutter Based on Particle Filtering
    YANG Xiaojuna
    [J]. Chinese Journal of Aeronautics, 2011, (02) : 171 - 180