Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments

被引:0
|
作者
Dongxing Cao
Yanhui Gao
Wenhua Hu
机构
[1] Beijing University of Technology,College of Mechanical Engineering
[2] Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures,School of Mechanical Engineering
[3] Tianjin University of Technology,undefined
来源
Acta Mechanica Sinica | 2019年 / 35卷
关键词
Vibration energy harvesting; Piezoelectric cantilever beam; Stepped variable thicknesses; Finite element method simulation;
D O I
暂无
中图分类号
学科分类号
摘要
A novel oscillator structure consisting of a bimorph piezoelectric cantilever beam with two steps of different thicknesses is proposed to improve the energy harvesting performance of a vibration energy harvester (VEH) for use in low-frequency vibration environments. Firstly, the piezoelectric cantilever is segmented to obtain the energy functions based on the Euler–Bernoulli beam assumptions, then the Galerkin approach is utilized to discretize the energy functions. Applying boundary conditions and continuity conditions enforced at separation locations, the coupled electromechanical equations governing the piezoelectric energy harvester are introduced by means of the Lagrange equations. Furthermore, expressions for the steady-state response are obtained for harmonic base excitations at arbitrary frequencies. Numerical results are computed, and the effects of the ratio of lengths, ratio of thicknesses, end thickness, and load resistance on the output voltage, harvested power, and power density are discussed. Moreover, to verify the analytical results, finite element method simulations are also conducted to analyze the performance of the proposed VEH, showing good agreement. All the results show that the present oscillator structure is more efficient than the conventional, uniform beam structure, specifically for vibration energy harvesting in low-frequency environments.
引用
收藏
页码:894 / 911
页数:17
相关论文
共 50 条
  • [1] Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments
    Cao, Dongxing
    Gao, Yanhui
    Hu, Wenhua
    [J]. ACTA MECHANICA SINICA, 2019, 35 (04) : 894 - 911
  • [2] Low-Frequency Meandering Piezoelectric Vibration Energy Harvester
    Berdy, David F.
    Srisungsitthisunti, Pornsak
    Jung, Byunghoo
    Xu, Xianfan
    Rhoads, Jeffrey F.
    Peroulis, Dimitrios
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (05) : 846 - 858
  • [3] Multimode auxetic piezoelectric energy harvester for low-frequency vibration
    He, Longfei
    Kurita, Hiroki
    Narita, Fumio
    [J]. SMART MATERIALS AND STRUCTURES, 2024, 33 (03)
  • [4] Modeling of a Rope-Driven Piezoelectric Vibration Energy Harvester for Low-Frequency and Wideband Energy Harvesting
    Zhang, Jinhui
    Lin, Maoyu
    Zhou, Wei
    Luo, Tao
    Qin, Lifeng
    [J]. MICROMACHINES, 2021, 12 (03)
  • [5] A micromachined low-frequency piezoelectric harvester for vibration and wind energy scavenging
    He, Xuefeng
    Shang, Zhengguo
    Cheng, Yaoqing
    Zhu, You
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (12)
  • [6] MEMS-based low-frequency piezoelectric vibration energy harvester
    [J]. Li, Peng-Wei, 1600, Chinese Academy of Sciences (22):
  • [7] Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester
    Takei, Ryohei
    Makimoto, Natsumi
    Okada, Hironao
    Itoh, Toshihiro
    Kobayashi, Takeshi
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (06)
  • [8] Development of Mechanical Coupling For Piezoelectric Energy Harvester Adapted to Low-Frequency Vibration
    Untoro, Tri
    Suprijanto
    Ekawati, Estiyanti
    [J]. 2015 4TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATIONS, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING (ICICI-BME), 2015, : 134 - 137
  • [9] Modelling of Mechanical Coupling for Piezoelectric Energy Harvester Adapted to Low-Frequency Vibration
    Untoro, T.
    Viridi, S.
    Suprijanto
    Ekawati, E.
    [J]. INTERNATIONAL CONFERENCE ON ENERGY SCIENCES (ICES 2016), 2017, 877
  • [10] Multi-band piezoelectric vibration energy harvester for low-frequency applications
    Jaya Chandwani
    Rohit Somkuwar
    Raghavendra Deshmukh
    [J]. Microsystem Technologies, 2019, 25 : 3867 - 3877