Differential Graded Cohomology and Lie Algebras¶of Holomorphic Vector Fields

被引:0
|
作者
Friedrich Wagemann
机构
[1] Institut Girard Desargues – UPRES-A 5028 du CNRS,
[2] Université Claude Bernard Lyon-I,undefined
[3] ¶43,undefined
[4] bd du 11. Novembre 1918,undefined
[5] 69622 Villeurbanne Cedex,undefined
[6] France.¶E-mail: wagemann@desargues.univ-lyon1.fr,undefined
来源
关键词
Grade Cohomology;
D O I
暂无
中图分类号
学科分类号
摘要
This article continues work of B. L. Feigin [5] and N. Kawazumi [15] on the Gelfand-Fuks cohomology of the Lie algebra of holomorphic vector fields on a complex manifold. As this is not always an interesting Lie algebra (for example, it is 0 for a compact Riemann surface of genus greater than 1), one looks for other objects having locally the same cohomology. The answer is a cosimplicial Lie algebra and a differential graded Lie algebra (well known in Kodaira–Spencer deformation theory). We calculate the corresponding cohomologies and the result is very similar to the result of A. Haefliger [12], R. Bott and G. Segal [2] in the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} vector fields. Applications are in conformal field theory (for Riemann surfaces), deformation theory and foliation theory.
引用
收藏
页码:521 / 540
页数:19
相关论文
共 50 条