Global analysis of a new reaction–diffusion multi-group SVEIR propagation model with time delay

被引:0
|
作者
Linhe Zhu
Xuewei Wang
机构
[1] Jiangsu University,School of Mathematical Sciences
[2] Dalian University of Technology,School of Mathematical Sciences
关键词
Reaction–diffusion system; Multi-group SVEIR model; Global stability; Time delay; Graph theory; 05C05; 34D23; 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the global dynamic behavior of a new reaction–diffusion multi-group SVEIR (Susceptible-Vaccinated-Exposed-Infectious-Recovered) rumor propagation model is studied. Compared with the traditional SVIR and SEIR models, the new model takes into account the latent of rumors, that is, believing rumors does not mean spreading rumors, and the impact of official rumor refutation on rumor propagation, which will lead to positive changes in the results of rumor propagation. The expression of basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} obtained through the next generation matrix method. By constructing Lyapunov function and applying graph-theoretic approach, we have obtained that the rumor eliminating equilibrium point E0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_0$$\end{document} is globally asymptotically stable when R0≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0\le 1$$\end{document}, and the rumor spreading equilibrium point E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E^*$$\end{document} is globally asymptotically stable when R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0>1$$\end{document}. The conclusion is verified by numerical simulation. In addition, the effects of time delay and the total number of plates are also given by numerical simulation.
引用
收藏
相关论文
共 50 条
  • [1] Global analysis of a new reaction-diffusion multi-group SVEIR propagation model with time delay
    Zhu, Linhe
    Wang, Xuewei
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [2] A MULTI-GROUP SVEIR EPIDEMIC MODEL WITH DISTRIBUTED DELAY AND VACCINATION
    Wang, Jinliang
    Takeuchi, Yasuhiro
    Liu, Shengqiang
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2012, 5 (03)
  • [3] GLOBAL ANALYSIS OF A MULTI-GROUP ANIMAL EPIDEMIC MODEL WITH INDIRECT INFECTION AND TIME DELAY
    Hou, Qiang
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 1023 - 1040
  • [4] Global Stability of a Multi-group SVEIR Epidemiological Model with the Vaccination Age and Infection Age
    Mingwang Shen
    Yanni Xiao
    [J]. Acta Applicandae Mathematicae, 2016, 144 : 137 - 157
  • [5] Global Stability of a Multi-group SVEIR Epidemiological Model with the Vaccination Age and Infection Age
    Shen, Mingwang
    Xiao, Yanni
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2016, 144 (01) : 137 - 157
  • [6] Global analysis of a delay SVEIR epidemiological model
    Tehrani, N. Farajzadeh
    Razvan, M. R.
    Yasaman, S.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2013, 37 (A4): : 483 - 489
  • [7] Global stability of a multi-group model with distributed delay and vaccination
    Xu, Jinhu
    Geng, Yan
    Zhou, Yicang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1475 - 1486
  • [8] Global dynamics in a reaction-diffusion multi-group SIR epidemic model with nonlinear incidence
    Luo, Yantao
    Tang, Sitian
    Teng, Zhidong
    Zhang, Long
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 50 : 365 - 385
  • [9] Global stability of a multi-group SEI model
    Xue, Yakui
    Yuan, Xinpeng
    Liu, Maoxing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 51 - 60
  • [10] A nonstandard finite difference scheme for a multi-group epidemic model with time delay
    Jinhu Xu
    Yan Geng
    [J]. Advances in Difference Equations, 2017