Regularity of Intersection Local Times of Fractional Brownian Motions

被引:0
|
作者
Dongsheng Wu
Yimin Xiao
机构
[1] University of Alabama in Huntsville,Department of Mathematical Sciences
[2] Michigan State University,Department of Statistics and Probability
来源
关键词
Intersection local time; Fractional Brownian motion; Joint continuity; Hölder condition; Hausdorff dimension; Packing dimension; 60G15; 60J55; 60G18; 60F25; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{\alpha_{i}}$\end{document} be an (Ni,d)-fractional Brownian motion with Hurst index αi (i=1,2), and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{\alpha_{1}}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{\alpha_{2}}$\end{document} be independent. We prove that, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{N_{1}}{\alpha_{1}}+\frac{N_{2}}{\alpha_{2}}>d$\end{document} , then the intersection local times of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{\alpha_{1}}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^{\alpha_{2}}$\end{document} exist, and have a continuous version. We also establish Hölder conditions for the intersection local times and determine the Hausdorff and packing dimensions of the sets of intersection times and intersection points.
引用
收藏
页码:972 / 1001
页数:29
相关论文
共 50 条
  • [1] Regularity of Intersection Local Times of Fractional Brownian Motions
    Wu, Dongsheng
    Xiao, Yimin
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) : 972 - 1001
  • [2] LARGE DEVIATIONS FOR LOCAL TIMES AND INTERSECTION LOCAL TIMES OF FRACTIONAL BROWNIAN MOTIONS AND RIEMANN-LIOUVILLE PROCESSES
    Chen, Xia
    Li, Wenbo V.
    Rosinski, Jan
    Shao, Qi-Man
    ANNALS OF PROBABILITY, 2011, 39 (02): : 729 - 778
  • [3] Intersection Local Times of Independent Fractional Brownian Motions as Generalized White Noise Functionals
    Oliveira, Maria Joao
    da Silva, Jose Luis
    Streit, Ludwig
    ACTA APPLICANDAE MATHEMATICAE, 2011, 113 (01) : 17 - 39
  • [4] Intersection Local Times of Independent Fractional Brownian Motions as Generalized White Noise Functionals
    Maria João Oliveira
    José Luís da Silva
    Ludwig Streit
    Acta Applicandae Mathematicae, 2011, 113 : 17 - 39
  • [5] Remarks on the intersection local time of fractional Brownian motions
    Chen, Chao
    Yan, Litan
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (08) : 1003 - 1012
  • [6] Self-intersection local times and collision local times of bifractional Brownian motions
    JIANG YiMing & WANG YongJin School of Mathematical Sciences and The Key Laboratory of Pure Mathematies and Combinatories
    Science China Mathematics, 2009, (09) : 1905 - 1919
  • [7] Holder properties of local times for fractional Brownian motions
    Baraka, D.
    Mountford, T.
    Xiao, Y.
    METRIKA, 2009, 69 (2-3) : 125 - 152
  • [8] Intersection Local Time for Two Independent Fractional Brownian Motions
    David Nualart
    Salvador Ortiz-Latorre
    Journal of Theoretical Probability, 2007, 20 : 759 - 767
  • [9] Self-intersection local times and collision local times of bifractional Brownian motions
    Jiang YiMing
    Wang YongJin
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (09): : 1905 - 1919
  • [10] Self-intersection local times and collision local times of bifractional Brownian motions
    YiMing Jiang
    YongJin Wang
    Science in China Series A: Mathematics, 2009, 52 : 1905 - 1919