An efficient binomial method for pricing¶American options

被引:2
|
作者
Marcellino Gaudenzi
Flavio Pressacco
机构
[1] Dipartimento di Finanza dell'Impresa e dei Mercati Finanziari,
[2] University of Udine¶e-mail: gaudenzi@uniud.it; Flavio.Pressacco@dfimf.uniud.it,undefined
关键词
Mathematics Subject Classification (2000): 91B28; Journal of Economic Literature Classification: C63;
D O I
10.1007/s102030300000
中图分类号
学科分类号
摘要
We present a new method for obtaining fast and accurate estimates of the price of an American put option by binomial trees. The method is based on the interpolation of suitable values obtained by modifying the contractual strike. A time-saving procedure allows us to derive all the interpolating data from a unique standard backward procedure.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条
  • [1] AN EFFICIENT BINOMIAL METHOD FOR PRICING ASIAN OPTIONS
    Moon, Kyoung-Sook
    Jeong, Yunju
    Kim, Hongjoong
    [J]. ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2016, 50 (02): : 151 - 164
  • [2] Pricing of perpetual American and Bermudan options by binomial tree method
    Lin J.
    Liang J.
    [J]. Frontiers of Mathematics in China, 2007, 2 (2) : 243 - 256
  • [3] PRICING AND HEDGING AMERICAN BARRIER OPTIONS BY A MODIFIED BINOMIAL METHOD
    Gaudenzi, Marcellino
    Lepellere, Maria Antonietta
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2006, 9 (04) : 533 - 553
  • [4] On the binomial tree method and other issues in connection with pricing Bermudan and American options
    Prekopa, Andras
    Szantai, Tamas
    [J]. QUANTITATIVE FINANCE, 2012, 12 (01) : 21 - 26
  • [5] The singular points binomial method for pricing American path-dependent options
    Gaudenzi, Marcellino
    Zanette, Antonino
    Lepellere, Maria Antonietta
    [J]. JOURNAL OF COMPUTATIONAL FINANCE, 2010, 14 (01) : 29 - 56
  • [6] AN IMPROVED BINOMIAL METHOD FOR PRICING ASIAN OPTIONS
    Moon, Kyoung-Sook
    Kim, Hong Joong
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (02): : 397 - 406
  • [7] A refined binomial lattice for pricing American Asian options
    Chalasani P.
    Somesh J.H.A.
    Egriboyun F.
    Varikooty A.
    [J]. Review of Derivatives Research, 1999, 3 (1) : 85 - 105
  • [8] Canonical Distribution, Implied Binomial Tree, and the Pricing of American Options
    Liu, Qiang
    Guo, Shuxin
    [J]. JOURNAL OF FUTURES MARKETS, 2013, 33 (02) : 183 - 198
  • [9] Randomized Binomial Tree and Pricing of American-Style Options
    Hu Xiaoping
    Cao Jie
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [10] Pricing American barrier options with discrete dividends by binomial trees
    Gaudenzi M.
    Zanette A.
    [J]. Decisions in Economics and Finance, 2009, 32 (2) : 129 - 148