A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media

被引:0
|
作者
Ying He
Bo Han
机构
[1] Harbin Institute of Technology,Department of Mathematics
来源
关键词
wavelet multiresolution method; numerical simulation; fluid-saturated porous media; finite-difference method; O175.2; O357; 35D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider numerical simulation of wave propagation in fluid-saturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.
引用
收藏
页码:1495 / 1504
页数:9
相关论文
共 50 条
  • [1] A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media
    Ying, He
    Bo, Han
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (11) : 1495 - 1504
  • [2] A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media
    贺英
    韩波
    [J]. Applied Mathematics and Mechanics(English Edition), 2008, (11) : 1495 - 1504
  • [3] Finite element analysis of wave propagation in fluid-saturated porous media
    Yan, B
    Liu, ZF
    Zhang, XW
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1999, 20 (12) : 1331 - 1341
  • [4] FINITE ELEMENT ANALYSIS OF WAVE PROPAGATION IN FLUID-SATURATED POROUS MEDIA
    严波
    刘占芳
    张湘伟
    [J]. Applied Mathematics and Mechanics(English Edition), 1999, (12) : 1331 - 1341
  • [5] Finite element analysis of wave propagation in fluid-saturated porous media
    Bo Y.
    Zhanfang L.
    Xiangwei Z.
    [J]. Applied Mathematics and Mechanics, 1999, 20 (12) : 1331 - 1341
  • [6] Numerical Simulation of Wave Propagation Phenomena in Fluid-Saturated Two-Phase Porous Media
    Yan, Bo
    Hu, Ning
    Lu, Xin
    Kameyama, Masaki
    [J]. MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2005, 1 (02) : 109 - 130
  • [7] Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media
    Guo Gui-Hong
    Yan Jian-Ping
    Zhang Zhi
    Badal, Jose
    Cheng Jian-Wu
    Shi Shuang-Hu
    Ma Ya-Wei
    [J]. APPLIED GEOPHYSICS, 2018, 15 (02) : 299 - 310
  • [8] Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media
    Gui-Hong Guo
    Jian-Ping Yan
    Zhi Zhang
    José Badal
    Jian-Wu Cheng
    Shuang-Hu Shi
    Ya-Wei Ma
    [J]. Applied Geophysics, 2018, 15 : 299 - 310
  • [9] A wavelet finite element method for the 2-D wave equation in fluid-saturated porous media
    Zhang, XM
    Liu, KA
    Liu, JQ
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2005, 48 (05): : 1156 - 1166
  • [10] Finite-Difference Modeling of the Seismoelectric Logging in Fluid-Saturated Porous Formations
    Guan, Wei
    Yang, Yufeng
    Yao, Zexin
    Hu, Hengshan
    [J]. POROMECHANICS VI: PROCEEDINGS OF THE SIXTH BIOT CONFERENCE ON POROMECHANICS, 2017, : 1540 - 1547