Spontaneous formation of nanoparticles on electrospun nanofibres

被引:0
|
作者
Norbert Radacsi
Fernando Diaz Campos
Calum R. I. Chisholm
Konstantinos P. Giapis
机构
[1] California Institute of Technology,Division of Chemistry and Chemical Engineering
[2] The University of Edinburgh,Institute for Materials and Processes, The School of Engineering
[3] SAFCell Inc. 36 S. Chester Ave,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We report the spontaneous formation of nanoparticles on smooth nanofibres in a single-step electrospinning process, as an inexpensive and scalable method for producing high-surface-area composites. Layers of nanofibres, containing the proton conducting electrolyte, caesium dihydrogen phosphate, are deposited uniformly over large area substrates from clear solutions of the electrolyte mixed with polymers. Under certain conditions, the normally smooth nanofibres develop caesium dihydrogen phosphate nanoparticles in large numbers on their external surface. The nanoparticles appear to originate from the electrolyte within the fibres, which is transported to the outer surface after the fibres are deposited, as evidenced by cross-sectional imaging of the electrospun fibres. The presence of nanoparticles on the fibre surface yields composites with increased surface area of exposed electrolyte, which ultimately enhances electrocatalytic performance. Indeed, solid acid fuel cells fabricated with electrodes from processed nanofibre-nanoparticle composites, produced higher cell voltage as compared to fuel cells fabricated with state-of-the-art electrodes.
引用
收藏
相关论文
共 50 条
  • [1] Spontaneous formation of nanoparticles on electrospun nanofibres
    Radacsi, Norbert
    Campos, Fernando Diaz
    Chisholm, Calum R. I.
    Giapis, Konstantinos P.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [2] Catalytic graphitization of electrospun cellulose nanofibres using silica nanoparticles
    Deng, Libo
    Lewandowska, Anna E.
    Young, Robert J.
    Zhang, Guoping
    Sun, Rong
    Eichhorn, Stephen J.
    [J]. REACTIVE & FUNCTIONAL POLYMERS, 2014, 85 : 235 - 238
  • [3] A STUDY ON ELECTROSPUN NANOFIBRES
    Beglou, M. J.
    Haghi, A. K.
    [J]. JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2009, 15 (03): : 323 - 328
  • [4] CHARACTERISATION OF ELECTROSPUN NANOFIBRES
    Mohammadian, M.
    Mottaghitalab, V.
    Haghi, A. K.
    [J]. JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2011, 17 (03): : 356 - 360
  • [5] Electrospinning and electrospun nanofibres
    Valizadeh, Alireza
    Farkhani, Samad Mussa
    [J]. IET NANOBIOTECHNOLOGY, 2014, 8 (02) : 83 - 92
  • [6] Synthesis of well-dispersed copper nanoparticles in electrospun polyacrylonitrile nanofibres
    Xu, Tong
    Li, Chunping
    Li, Hongqiang
    Bai, Jie
    Qin, Haili
    Sun, Weiyan
    [J]. MICRO & NANO LETTERS, 2013, 8 (12): : 849 - 852
  • [7] Carbonized electrospun cellulose composite nanofibres containing silicon carbide nanoparticles
    Li, Qiang
    Zhu, Yanqiu
    Eichhorn, Stephen J.
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 123 : 71 - 78
  • [8] Carbon nanofibres produced from electrospun cellulose nanofibres
    Deng, Libo
    Young, Robert J.
    Kinloch, Ian A.
    Zhu, Yanqiu
    Eichhorn, Stephen J.
    [J]. CARBON, 2013, 58 : 66 - 75
  • [9] Fabrication of porous electrospun nanofibres
    Zhang, YZ
    Feng, Y
    Huang, ZM
    Ramakrishna, S
    Lim, CT
    [J]. NANOTECHNOLOGY, 2006, 17 (03) : 901 - 908
  • [10] Electrospun complexes - functionalised nanofibres
    Meyer, T.
    Wolf, M.
    Dreyer, B.
    Unruh, D.
    Krueger, C.
    Menze, M.
    Sindelar, R.
    Klingelhoefer, G.
    Renz, F.
    [J]. HYPERFINE INTERACTIONS, 2016, 237