On the automorphisms of generalized algebraic geometry codes

被引:0
|
作者
Engin Şenel
Figen Öke
机构
[1] Trakya University,Department of Mathematics
来源
关键词
Geometric Goppa codes; Generalized algebraic geometry codes; Code automorphisms; Automorphism groups of function fields; Algebraic function fields; 94B27; 14H37; 14H05; 14G50;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the class of generalized algebraic geometry codes (GAG codes) formed by two collections of places, with places of the same degree in each collection. We introduce the concept of N1N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_1N_2$$\end{document}-automorphism group of a GAG code in this class-that is, a subgroup of the automorphism group of the code. Then we determine a subgroup of the N1N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_1N_2$$\end{document}-automorphism group in the general case and the N1N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_1N_2$$\end{document}-automorphism group itself in the rational function field case. We also explicitly construct such a group. This paper presents a method to obtain similar results for the GAG codes that have more collections of places of the same degree in their construction.
引用
收藏
页码:1369 / 1379
页数:10
相关论文
共 50 条