Worst-Case Optimal Tree Layout in External Memory

被引:0
|
作者
Erik D. Demaine
John Iacono
Stefan Langerman
机构
[1] MIT Computer Science and Artificial Intelligence Laboratory,MADALGO—Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation
[2] Polytechnic Institute of New York University (Formerly Polytechnic University),Département d’informatique, Université Libre de Bruxelles
[3] Aarhus University,undefined
[4] F.R.S.-FNRS,undefined
来源
Algorithmica | 2015年 / 72卷
关键词
Data structures; Trees; External-memory;
D O I
暂无
中图分类号
学科分类号
摘要
Consider laying out a fixed-topology binary tree of N nodes into external memory with block size B so as to minimize the worst-case number of block memory transfers required to traverse a path from the root to a node of depth D. We prove that the optimal number of memory transfers is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \begin{cases} \varTheta( {D \over\lg(1{+}B)} ) & \mathrm{when}~D = O(\lg N), \\ \varTheta( {\lg N \over\lg(1{+}{B \lg N \over D} )} ) & \mathrm{when}~D = \varOmega(\lg N)~\mathrm{and}~D = O(B \lg N), \\ \varTheta( {D \over B} ) & \mathrm{when}~D = \varOmega(B \lg N). \end{cases} \end{aligned}$$ \end{document}
引用
收藏
页码:369 / 378
页数:9
相关论文
共 50 条
  • [1] Worst-Case Optimal Tree Layout in External Memory
    Demaine, Erik D.
    Iacono, John
    Langerman, Stefan
    ALGORITHMICA, 2015, 72 (02) : 369 - 378
  • [2] Worst-case efficient external-memory priority queues
    Brodal, GS
    Katajainen, J
    ALGORITHM THEORY - SWAT'98, 1998, 1432 : 107 - 118
  • [3] Optimal layout of additional facilities for minimization of domino effects based on worst-case scenarios
    Won So
    Young-Hun Kim
    Chang Jun Lee
    Dongil Shin
    En Sup Yoon
    Korean Journal of Chemical Engineering, 2011, 28 : 656 - 666
  • [4] Optimal layout of additional facilities for minimization of domino effects based on worst-case scenarios
    So, Won
    Kim, Young-Hun
    Lee, Chang Jun
    Shin, Dongil
    Yoon, En Sup
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2011, 28 (03) : 656 - 666
  • [5] Robust worst-case optimal investment
    Sascha Desmettre
    Ralf Korn
    Peter Ruckdeschel
    Frank Thomas Seifried
    OR Spectrum, 2015, 37 : 677 - 701
  • [6] RECTANGULAR LAYOUT PROBLEMS WITH WORST-CASE DISTANCE MEASURES
    THORNTON, VD
    FRANCIS, RL
    LOWE, TJ
    AIIE TRANSACTIONS, 1979, 11 (01): : 2 - 11
  • [7] Worst-case Optimal Incremental Sorting
    Regla, Erik
    Paredes, Rodrigo
    2015 34TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2015,
  • [8] Worst-case Optimal Join Algorithms
    Ngo, Hung Q.
    Porat, Ely
    Re, Christopher
    Rudra, Atri
    JOURNAL OF THE ACM, 2018, 65 (03)
  • [9] The Priority R-Tree: A Practically Efficient and Worst-Case Optimal R-Tree
    Arge, Lars
    De Berg, Mark
    Haverkort, Herman
    Yi, Ke
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (01)
  • [10] Robust worst-case optimal investment
    Desmettre, Sascha
    Korn, Ralf
    Ruckdeschel, Peter
    Seifried, Frank Thomas
    OR SPECTRUM, 2015, 37 (03) : 677 - 701