Image Classification Using Hybrid Classical-Quantum Neutral Networks

被引:0
|
作者
Ling, Ya-Qi [1 ]
Zhang, Jun-Hu [1 ]
Zhang, Li-Hua [1 ]
Li, Yan-Ran [1 ]
Huang, Hui-Lei [1 ]
机构
[1] Anqing Normal Univ, Sch Elect Engn & Intelligent Mfg, Anqing 246133, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid quantum-classical neural network; Image classification application; Parameterized quantum circuits; Quantum natural gradient algorithm;
D O I
10.1007/s10773-024-05669-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the increasing complexity of image classification tasks, traditional convolutional neural networks face performance bottlenecks when dealing with intricate network structures. To address this issue, this paper proposes an image classification model based on a hybrid quantum-classical neural network. This model incorporates parameterized quantum circuits into convolutional networks to achieve a hybrid embedding and direct output. The information from fully connected layers is utilized as control parameters for quantum layers, and the pixel values of images are mapped to quantum bit states through amplitude encoding. This allows the network to simultaneously process information from multiple pixels. Furthermore, the introduction of the quantum natural gradient algorithm aims to better handle the geometric properties of the quantum parameter space, accelerating model convergence and improving training efficiency. Experimental results demonstrate an increase in recognition accuracy of 2.42%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.42 \%$$\end{document} and 5.21%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.21 \%$$\end{document} on the MNIST dataset compared to convolutional networks and fully connected networks, respectively. When compared to other algorithms of the same type, the proposed algorithm shows an improvement of 2.14%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.14 \%$$\end{document} and 3.23%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.23 \%$$\end{document}, showcasing superior classification performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Underwater Animal Identification and Classification Using a Hybrid Classical-Quantum Algorithm
    Pravin, Sheena Christabel
    Rohith, G.
    Kiruthika, V.
    Manikandan, E.
    Methelesh, S.
    Manoj, A.
    [J]. IEEE ACCESS, 2023, 11 : 141902 - 141914
  • [2] A hybrid classical-quantum algorithm for digital image processing
    Alok Shukla
    Prakash Vedula
    [J]. Quantum Information Processing, 22
  • [3] Hybrid classical-quantum transfer learning for text classification
    Ardeshir-Larijani, Ebrahim
    Nasiri Fatmehsari, Mohammad Mahdi
    [J]. QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [4] A hybrid classical-quantum algorithm for digital image processing
    Shukla, Alok
    Vedula, Prakash
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [5] Transfer learning in hybrid classical-quantum neural networks
    Mari, Andrea
    Bromley, Thomas R.
    Izaac, Josh
    Schuld, Maria
    Killoran, Nathan
    [J]. QUANTUM, 2020, 4
  • [6] A hybrid classical-quantum approach for multi-class classification
    Chalumuri, Avinash
    Kune, Raghavendra
    Manoj, B. S.
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (03)
  • [7] A hybrid classical-quantum approach for multi-class classification
    Avinash Chalumuri
    Raghavendra Kune
    B. S. Manoj
    [J]. Quantum Information Processing, 2021, 20
  • [8] Hybrid classical-quantum dynamics
    Peres, A
    Terno, DR
    [J]. PHYSICAL REVIEW A, 2001, 63 (02):
  • [9] Remote Sensing Image Scene Classification in Hybrid Classical-Quantum Transferring CNN with Small Samples
    Zhang, Zhouwei
    Mi, Xiaofei
    Yang, Jian
    Wei, Xiangqin
    Liu, Yan
    Yan, Jian
    Liu, Peizhuo
    Gu, Xingfa
    Yu, Tao
    [J]. SENSORS, 2023, 23 (18)
  • [10] A shallow hybrid classical-quantum spiking feedforward neural network for noise-robust image classification
    Konar, Debanjan
    Das Sarma, Aditya
    Bhandary, Soham
    Bhattacharyya, Siddhartha
    Cangi, Attila
    Aggarwal, Vaneet
    [J]. APPLIED SOFT COMPUTING, 2023, 136