New, fast, and precise method of COVID-19 detection in nasopharyngeal and tracheal aspirate samples combining optical spectroscopy and machine learning

被引:0
|
作者
Denny M. Ceccon
Paulo Henrique R. Amaral
Lídia M. Andrade
Maria I. N. da Silva
Luis A. F. Andrade
Thais F. S. Moraes
Flavia F. Bagno
Raissa P. Rocha
Daisymara Priscila de Almeida Marques
Geovane Marques Ferreira
Alice Aparecida Lourenço
Ágata Lopes Ribeiro
Jordana G. A. Coelho-dos-Reis
Flavio G. da Fonseca
J. C. Gonzalez
机构
[1] Universidade Federal de Minas Gerais,Departamento de Física
[2] Avenida Antônio Carlos,Centro de Tecnologia Em Vacinas
[3] Universidade Federal de Minas Gerais,Laboratório de Virologia Básica E Aplicada, Departamento de Microbiologia
[4] Universidade Federal de Minas Gerais,undefined
来源
关键词
Optical spectroscopy; Artificial intelligence; Machine learning; COVID-19; Label-free diagnosis;
D O I
暂无
中图分类号
学科分类号
摘要
Fast, precise, and low-cost diagnostic testing to identify persons infected with SARS–CoV-2 virus is pivotal to control the global pandemic of COVID-19 that began in late 2019. The gold standard method of diagnostic recommended is the RT-qPCR test. However, this method is not universally available, and is time-consuming and requires specialized personnel, as well as sophisticated laboratories. Currently, machine learning is a useful predictive tool for biomedical applications, being able to classify data from diverse nature. Relying on the artificial intelligence learning process, spectroscopic data from nasopharyngeal swab and tracheal aspirate samples can be used to leverage characteristic patterns and nuances in healthy and infected body fluids, which allows to identify infection regardless of symptoms or any other clinical or laboratorial tests. Hence, when new measurements are performed on samples of unknown status and the corresponding data is submitted to such an algorithm, it will be possible to predict whether the source individual is infected or not. This work presents a new methodology for rapid and precise label-free diagnosing of SARS-CoV-2 infection in clinical samples, which combines spectroscopic data acquisition and analysis via artificial intelligence algorithms. Our results show an accuracy of 85% for detection of SARS-CoV-2 in nasopharyngeal swab samples collected from asymptomatic patients or with mild symptoms, as well as an accuracy of 97% in tracheal aspirate samples collected from critically ill COVID-19 patients under mechanical ventilation. Moreover, the acquisition and processing of the information is fast, simple, and cheaper than traditional approaches, suggesting this methodology as a promising tool for biomedical diagnosis vis-à-vis the emerging and re-emerging viral SARS-CoV-2 variant threats in the future.
引用
收藏
页码:769 / 777
页数:8
相关论文
共 50 条
  • [1] New, fast, and precise method of COVID-19 detection in nasopharyngeal and tracheal aspirate samples combining optical spectroscopy and machine learning
    Ceccon, Denny M.
    Amaral, Paulo Henrique R.
    Andrade, Lidia M.
    da Silva, Maria I. N.
    Andrade, Luis A. F.
    Moraes, Thais F. S.
    Bagno, Flavia F.
    Rocha, Raissa P.
    de Almeida Marques, Daisymara Priscila
    Ferreira, Geovane Marques
    Lourenco, Alice Aparecida
    Ribeiro, Agata Lopes
    Coelho-dos-Reis, Jordana G. A.
    da Fonseca, Flavio G.
    Gonzalez, J. C.
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2023, 54 (02) : 769 - 777
  • [2] COVID-19 Vaccine Distribution: Combining SEIR and Machine Learning
    Lopez-Sandoval, Victor
    UNICIENCIA, 2022, 36 (01)
  • [3] Analysis of Machine Learning Methods for COVID-19 Detection Using Serum Raman Spectroscopy
    Chen, David
    APPLIED ARTIFICIAL INTELLIGENCE, 2021, 35 (14) : 1147 - 1168
  • [4] A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning
    Soto, Ismael
    Zamorano-Illanes, Raul
    Becerra, Raimundo
    Jativa, Pablo Palacios
    Azurdia-Meza, Cesar A.
    Alavia, Wilson
    Garcia, Veronica
    Ijaz, Muhammad
    Zabala-Blanco, David
    SENSORS, 2023, 23 (03)
  • [5] Machine Learning Facemask Detection Models for COVID-19
    Puzi, Asmarani Ahmad
    Zainuddin, Ahmad Anwar
    Sahak, Rohilah
    Yunos, Muhammad Farhan Affendi Mohamad
    Rahman, Siti Husna Abdul
    Ramly, Munirah Mohd
    Maaz, Muhammad
    Kaitane, Wonderful Shammah
    2022 IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE 2022), 2022, : 148 - 151
  • [6] Machine Learning Approach for COVID-19 Detection on Twitter
    Amin, Samina
    Uddin, M. Irfan
    Al-Baity, Heyam H.
    Zeb, M. Ali
    Khan, M. Abrar
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (02): : 2231 - 2247
  • [7] COVID-19 detection using federated machine learning
    Salam, Mustafa Abdul
    Taha, Sanaa
    Ramadan, Mohamed
    PLOS ONE, 2021, 16 (06):
  • [8] COVID-19 Infection Detection Using Machine Learning
    Wang, Leo
    Shen, Haiying
    Enfield, Kyle
    Rheuban, Karen
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 4780 - 4789
  • [9] Machine learning COVID-19 detection from wearables
    Nestor, Bret
    Hunter, Jaryd
    Kainkaryam, Raghu
    Drysdale, Erik
    Inglis, Jeffrey B.
    Shapiro, Allison
    Nagaraj, Sujay
    Ghassemi, Marzyeh
    Foschini, Luca
    Goldenberg, Anna
    LANCET DIGITAL HEALTH, 2023, 5 (04): : E182 - E184
  • [10] New machine learning method for image-based diagnosis of COVID-19
    Elaziz, Mohamed Abd
    Hosny, Khalid M.
    Salah, Ahmad
    Darwish, Mohamed M.
    Lu, Songfeng
    Sahlol, Ahmed T.
    PLOS ONE, 2020, 15 (06):