Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions

被引:0
|
作者
Alexander Quaas
Aliang Xia
机构
[1] Universidad Técnica Federico Santa María,Departamento de Matemática
关键词
Fractional Laplacian; Sign-changing weight; Nehari manifold; Lusternik–Schnirelmann category; 35J25; 35J60; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we prove the existence and multiplicity of positive solutions for the following fractional elliptic equation with sign-changing weight functions: (-Δ)αu=aλ(x)|u|q-2u+b(x)|u|2α∗-1uinΩ,u=0inRN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{l@{\quad}l}(-\Delta)^\alpha u= a_\lambda(x)|u|^{q-2}u+b(x)|u|^{2^*_\alpha-1}u &{\rm in} \,\,\Omega, \\ u=0&{\rm in} \,\,\mathbb{R}^N{\setminus} \Omega,\end{array}\right.$$\end{document}where 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \alpha < 1}$$\end{document}, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document} is a bounded domain with smooth boundary in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} with N>2α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N > 2 \alpha}$$\end{document} and 2α∗=2N/(N-2α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^*_{\alpha}=2N/(N-2\alpha)}$$\end{document} is the fractional critical Sobolev exponent. Our multiplicity results are based on studying the decomposition of the Nehari manifold and the Lusternik–Schnirelmann category.
引用
收藏
相关论文
共 50 条