In this article, we prove the existence and multiplicity of positive solutions for the following fractional elliptic equation with sign-changing weight functions:
(-Δ)αu=aλ(x)|u|q-2u+b(x)|u|2α∗-1uinΩ,u=0inRN\Ω,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{\begin{array}{l@{\quad}l}(-\Delta)^\alpha u= a_\lambda(x)|u|^{q-2}u+b(x)|u|^{2^*_\alpha-1}u &{\rm in}
\,\,\Omega, \\ u=0&{\rm in}
\,\,\mathbb{R}^N{\setminus}
\Omega,\end{array}\right.$$\end{document}where 0<α<1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${0 < \alpha < 1}$$\end{document}, Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Omega}$$\end{document} is a bounded domain with smooth boundary in RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^N}$$\end{document} with N>2α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${N > 2 \alpha}$$\end{document} and 2α∗=2N/(N-2α)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${2^*_{\alpha}=2N/(N-2\alpha)}$$\end{document} is the fractional critical Sobolev exponent. Our multiplicity results are based on studying the decomposition of the Nehari manifold and the Lusternik–Schnirelmann category.