By doping π-π systems with Li atom, a series of Li@sandwich configuration and Li@T-shaped configuration compounds have been theoretically designed and investigated using density functional theory. It is revealed that energy gaps (Egap) between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of all compounds are in a range of 0.4–0.9 ev. When Li atom is introduced into different sandwich configuration π-π systems (C60-toluene, C60-fluorobenzene, C60-phenol, C60-benzonitrile), Li@C60-benzonitrile exhibits considerable first hyperpolarizability as large as 19,759 au, which is larger by about 18,372–18,664 au than those of other compounds. When Li atom is introduced into different T-shaped configuration π-π systems (C60-pyridine, C60-pyrazine, C60-1, 3, 5-triazine, C60-pyridazine), Li@C60-pyridazine is found to present largest first hyperpolarizability up to 67,945 au in all compounds. All compounds are transparency in the deep ultraviolet spectrum range. We hope that this study could provide a new idea for designing nonlinear optical materials using π-π systems as building blocks.