We prove that for a coarse space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X$$\end{document} the ideal \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{S }(X)$$\end{document} of small subsets of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X$$\end{document} coincides with the ideal \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{D }_<(X)=\{A\subset X:\mathrm{asdim}(A)<\mathrm{asdim}(X)\}$$\end{document} provided that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X$$\end{document} is coarsely equivalent to a Euclidean space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{R }^n$$\end{document}. Also we prove that for a locally compact Abelian group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X$$\end{document}, the equality \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{S }(X)=\mathcal{D }_<(X)$$\end{document} holds if and only if the group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X$$\end{document} is compactly generated.
机构:
Univ Cape Town, Dept Math & Appl Math, Private Bag X1, ZA-7701 Cape Town, South AfricaUniv Cape Town, Dept Math & Appl Math, Private Bag X1, ZA-7701 Cape Town, South Africa
Russo, F. G.
Waka, O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cape Town, Dept Math & Appl Math, Private Bag X1, ZA-7701 Cape Town, South AfricaUniv Cape Town, Dept Math & Appl Math, Private Bag X1, ZA-7701 Cape Town, South Africa
机构:
Univ Udine, Dipartimento Matemat & Informat, Via Sci 206, I-33100 Udine, ItalyUniv Udine, Dipartimento Matemat & Informat, Via Sci 206, I-33100 Udine, Italy
Dikranjan, Dikran
Sanchis, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jaume 1, Dept Matemat, Campus Riu Sec S-N,8029 AP Castello, Castellon De La Plana, Castellon, SpainUniv Udine, Dipartimento Matemat & Informat, Via Sci 206, I-33100 Udine, Italy