We study geodesics for plurisubharmonic functions from the Cegrell class F1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {F}}_1$$\end{document} on a bounded hyperconvex domain of Cn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb {C}}}^{n}$$\end{document} and show that, as in the case of metrics on Kähler compact manifolds, they linearize an energy functional. As a consequence, we get a uniqueness theorem for functions from F1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {F}}_1$$\end{document} in terms of total masses of certain mixed Monge–Ampère currents. Geodesics of relative extremal functions are considered and a reverse Brunn–Minkowski inequality is proved for capacities of multiplicative combinations of multi-circled compact sets. We also show that functions with strong singularities generally cannot be connected by (sub)geodesic arcs.
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan