The Ground State Energy of a Two-Dimensional Bose Gas

被引:1
|
作者
Fournais, Soren [1 ]
Girardot, Theotime [2 ]
Junge, Lukas [1 ]
Morin, Leo [1 ]
Olivieri, Marco [1 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Univ Pk 5, Dk-2100 Copenhagen OE, Denmark
[2] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
关键词
SYSTEM;
D O I
10.1007/s00220-023-04907-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the following formula for the ground state energy density of a dilute Bose gas with density rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} in 2 dimensions in the thermodynamic limit e2D(rho)=4 pi rho 2Y(1-Y|logY|+(2 Gamma+12+log(pi))Y)+o(rho 2Y2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} e<^>{\text {2D}}(\rho ) = 4\pi \rho <^>2 Y\Big (1 - Y \vert \log Y \vert + \Big ( 2\Gamma + \frac{1}{2} + \log (\pi ) \Big ) Y \Big ) + o(\rho <^>2 Y<^>{2}), \end{aligned}$$\end{document}as rho a2 -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho a<^>2 \rightarrow 0$$\end{document}. Here Y=|log(rho a2)|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y= |\log (\rho a<^>2)|<^>{-1}$$\end{document} and a is the scattering length of the two-body potential. This result in 2 dimensions corresponds to the famous Lee-Huang-Yang formula in 3 dimensions. The proof is valid for essentially all positive potentials with finite scattering length, in particular, it covers the crucial case of the hard core potential.
引用
收藏
页数:104
相关论文
共 50 条
  • [1] The Ground State Energy of a Dilute Two-Dimensional Bose Gas
    Elliott H. Lieb
    Jakob Yngvason
    Journal of Statistical Physics, 2001, 103 : 509 - 526
  • [2] The ground state energy of a dilute two-dimensional Bose gas
    Lieb, EH
    Yngvason, J
    JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (3-4) : 509 - 526
  • [3] Ground state energy of a dilute two-dimensional Bose gas from the Bogoliubov free energy functional
    Fournais, Soren
    Napiorkowski, Marcin
    Reuvers, Robin
    Solovej, Jan Philip
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)
  • [4] Ground-State Properties of a Dilute Two-Dimensional Bose Gas
    Pastukhov, Volodymyr
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2019, 194 (3-4) : 197 - 208
  • [5] Ground-state properties of the two-dimensional charged Bose gas
    Davoudi, B
    Strepparola, E
    Tanatar, B
    Tosi, MP
    PHYSICAL REVIEW B, 2001, 63 (10): : 1045051 - 1045056
  • [6] Ground-State Properties of a Dilute Two-Dimensional Bose Gas
    Volodymyr Pastukhov
    Journal of Low Temperature Physics, 2019, 194 : 197 - 208
  • [7] The ground state and vortices in a two-dimensional Bose gas confined in a harmonic trap
    Tanatar, B
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (12) : 2719 - 2728
  • [8] Ground State Energy of the Two-Dimensional Weakly Interacting Bose Gas: First Correction Beyond Bogoliubov Theory
    Mora, Christophe
    Castin, Yvan
    PHYSICAL REVIEW LETTERS, 2009, 102 (18)
  • [9] Equilibrium state of a trapped two-dimensional Bose gas
    Rath, Steffen P.
    Yefsah, Tarik
    Guenter, Kenneth J.
    Cheneau, Marc
    Desbuquois, Remi
    Holzmann, Markus
    Krauth, Werner
    Dalibard, Jean
    PHYSICAL REVIEW A, 2010, 82 (01):
  • [10] Nonuniversal Equation of State of the Two-Dimensional Bose Gas
    Salasnich, L.
    PHYSICAL REVIEW LETTERS, 2017, 118 (13)