Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas

被引:0
|
作者
Benjamin Doerr
Frank Neumann
Andrew M. Sutton
机构
[1] Université Paris-Saclay,École Polytechnique
[2] University of Adelaide,School of Computer Science
[3] Universität Potsdam,Hasso
来源
Algorithmica | 2017年 / 78卷
关键词
Runtime analysis; Satisfiability; Fitness-distance correlation;
D O I
暂无
中图分类号
学科分类号
摘要
We contribute to the theoretical understanding of randomized search heuristics by investigating their optimization behavior on satisfiable random k-satisfiability instances both in the planted solution model and the uniform model conditional on satisfiability. Denoting the number of variables by n, our main technical result is that the simple (1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document}) evolutionary algorithm with high probability finds a satisfying assignment in time O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \log n)$$\end{document} when the clause-variable density is at least logarithmic. For low density instances, evolutionary algorithms seem to be less effective, and all we can show is a subexponential upper bound on the runtime for densities below 1k(k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{k(k-1)}$$\end{document}. We complement these mathematical results with numerical experiments on a broader density spectrum. They indicate that, indeed, the (1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document}) EA is less efficient on lower densities. Our experiments also suggest that the implicit constants hidden in our main runtime guarantee are low. Our main result extends and considerably improves the result obtained by Sutton and Neumann (Lect Notes Comput Sci 8672:942–951, 2014) in terms of runtime, minimum density, and clause length. These improvements are made possible by establishing a close fitness-distance correlation in certain parts of the search space. This approach might be of independent interest and could be useful for other average-case analyses of randomized search heuristics. While the notion of a fitness-distance correlation has been around for a long time, to the best of our knowledge, this is the first time that fitness-distance correlation is explicitly used to rigorously prove a performance statement for an evolutionary algorithm.
引用
收藏
页码:561 / 586
页数:25
相关论文
共 50 条
  • [1] Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas
    Doerr, Benjamin
    Neumann, Frank
    Sutton, Andrew M.
    ALGORITHMICA, 2017, 78 (02) : 561 - 586
  • [2] ON THE DIAMETER OF THE SET OF SATISFYING ASSIGNMENTS IN RANDOM SATISFIABLE k-CNF FORMULAS
    Feige, Uriel
    Flaxman, Abraham D.
    Vilenchik, Dan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 736 - 749
  • [3] On extremal k-CNF formulas
    Amano, Kazuyuki
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 39 - 50
  • [4] Inclusion-exclusion for k-CNF formulas
    Amano, K
    Iwama, K
    Maruoka, A
    Matsuo, K
    Matsuura, A
    INFORMATION PROCESSING LETTERS, 2003, 87 (02) : 111 - 117
  • [5] On smoothed k-CNF formulas and the Walksat algorithm
    Coja-Oghlan, Amin
    Feige, Uriel
    Frieze, Alan
    Krivelevich, Michael
    Vilenchik, Dan
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 451 - +
  • [6] Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time
    Krivelevich, Michael
    Vilenchik, Dan
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 454 - +
  • [8] Runtime Analysis of Evolutionary Algorithms on Randomly Constructed High-Density Satisfiable 3-CNF Formulas
    Sutton, Andrew M.
    Neumann, Frank
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 942 - 951
  • [9] The Horn renamability, q-Horn and SLUR threshold for random k-CNF formulas
    Chao, D.
    DISCRETE APPLIED MATHEMATICS, 2015, 185 : 44 - 51
  • [10] A spectral technique for random satisfiable 3CNF formulas
    Flaxman, A
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 357 - 363