Critical quantum chaos in 2D disordered systems with spin-orbit coupling

被引:0
|
作者
G.N. Katomeris
S.N. Evangelou
机构
[1] University of Ioannina,Department of Physics
关键词
PACS. 05.45.Mt Semiclassical chaos (“quantum chaos") - 71.30.+h Metal-insulator transitions and other electronic transitions - 72.15.Rn Localization effects (Anderson or weak localization);
D O I
暂无
中图分类号
学科分类号
摘要
We examine the validity of the recently proposed semi-Poisson level spacing distribution function P(S), which characterizes “critical quantum chaos”, in 2D disordered systems with spin-orbit coupling. At the Anderson transition we show that the semi-Poisson P(S) can describe closely the critical distribution obtained with averaged boundary conditions, over Dirichlet in one direction with periodic in the other and Dirichlet in both directions. We also obtain a sub-Poisson linear number variance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\nolimits_2 {(E) \approx \chi o + \chi E} $$\end{document}, with asymptotic value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi \approx 0.07$$\end{document}. The obtained critical statistics, intermediate between Wigner and Poisson, is discussed for disordered systems and chaotic models.
引用
收藏
页码:133 / 136
页数:3
相关论文
共 50 条
  • [1] Critical quantum chaos in 2D disordered systems with spin-orbit coupling
    Katomeris, GN
    Evangelou, SN
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2000, 16 (01): : 133 - 136
  • [2] Chaos in a quantum dot with spin-orbit coupling
    Berggren, KF
    Ouchterlony, T
    [J]. FOUNDATIONS OF PHYSICS, 2001, 31 (02) : 233 - 242
  • [3] Chaos in a Quantum Dot with Spin-Orbit Coupling
    K.-F. Berggren
    T. Ouchterlony
    [J]. Foundations of Physics, 2001, 31 : 233 - 242
  • [4] Cubic dresselhaus spin-orbit coupling in 2D electron quantum dots
    Krich, Jacob J.
    Halperin, Bertrand I.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (22)
  • [5] Highly Controllable and Robust 2D Spin-Orbit Coupling for Quantum Gases
    Sun, Wei
    Wang, Bao-Zong
    Xu, Xiao-Tian
    Yi, Chang-Rui
    Zhang, Long
    Wu, Zhan
    Deng, Youjin
    Liu, Xiong-Jun
    Chen, Shuai
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (15)
  • [6] Spin-orbit coupling at surfaces and 2D materials
    Krasovskii, E. E.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (49)
  • [7] Interaction of branches of magnetoplasmon spectrum in 2D systems with spin-orbit coupling
    Chaplik, A. V.
    Magarill, L. I.
    Vitlina, R. Z.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (04): : 944 - 947
  • [8] Spin chaos manifestation in a driven quantum billiard with spin-orbit coupling
    Khomitsky, D. V.
    Malyshev, A. I.
    Sherman, E. Ya.
    Di Ventra, M.
    [J]. PHYSICAL REVIEW B, 2013, 88 (19)
  • [9] Spin Circuit Model for 2D Channels with Spin-Orbit Coupling
    Hong, Seokmin
    Sayed, Shehrin
    Datta, Supriyo
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [10] Spin Circuit Model for 2D Channels with Spin-Orbit Coupling
    Seokmin Hong
    Shehrin Sayed
    Supriyo Datta
    [J]. Scientific Reports, 6