Reduction of capillary force for high-aspect ratio nanofabrication

被引:0
|
作者
T. Kondo
S. Juodkazis
H. Misawa
机构
[1] Hokkaido University,CREST
来源
Applied Physics A | 2005年 / 81卷
关键词
Capillary Force; Supercritical Fluid Extraction; Development Procedure; Diffractive Optical Element; Holographic Recording;
D O I
暂无
中图分类号
学科分类号
摘要
The wet processing of SU8 resist was modified in order to achieve a high-aspect ratio patterning with feature size of 100 nm. A final rinse in water, which makes a large contact angle on the resist (less wetting) was added to the procedure. This allowed considerable reduction of the capillary force, which is responsible for pattern distortions in three-dimensional (3D) lithography. 3D recording of high-aspect ratio (far=18) structures by holographic exposure using femtosecond pulses in SU8 resist was achieved using this modified development procedure. The thickness of the free-standing planes was approximately 100 nm. High fidelity of this recording method was confirmed by a Moiré pattern transfer into a developed SU8 pattern. In terms of focusing, the 100 nm feature size comprised 1/13-th of the diffraction limit. This modified development is applicable for wet processing when super-critical drying cannot be used.
引用
收藏
页码:1583 / 1586
页数:3
相关论文
共 50 条
  • [1] Reduction of capillary force for high-aspect ratio nanofabrication
    Kondo, T
    Juodkazis, S
    Misawa, H
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 81 (08): : 1583 - 1586
  • [2] High-aspect ratio nanofabrication by femtosecond irradiation
    Juodkazis, S
    Kondo, T
    Misawa, H
    2005 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, 2005, : 1039 - 1040
  • [3] Ion energy distribution measurement device using a capillary plate with high-aspect ratio
    Lee, Ho-Won
    Kim, Ju-Ho
    Chung, Chin-Wook
    PHYSICS OF PLASMAS, 2023, 30 (12)
  • [4] Reversibly Photoswitchable High-Aspect Ratio Surfaces
    Constante, Gissela
    Apsite, Indra
    Schoenfeld, Dennis
    Pretsch, Thorsten
    Ionov, Leonid
    SMALL STRUCTURES, 2023, 4 (10):
  • [5] High-aspect ratio nanostructures for cellular applications
    Buch-Manson, N.
    Rostgaard, K. R.
    Bonde, S.
    Bolinsson, J.
    Nygard, J.
    Martinez, K. L.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S69 - S69
  • [6] High-aspect ratio patterning of MnAs films
    Seidel, W.
    Ploog, K. H.
    Engel-Herbert, R.
    Hesjedal, T.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2006, 21 (10) : 1502 - 1506
  • [7] High-aspect ratio metallic nano grippers
    Lee, Jeongsoo
    Park, Daniel S.
    Nallani, Arun K.
    Cui, Yonghao
    Skoyles, Aidan
    Lee, J-B.
    2006 1ST IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2006, : 682 - +
  • [8] FRP confinement of high-aspect ratio concrete columns
    Kolyvas, C. S.
    Triantafillou, T. C.
    Bernakos, A. I.
    CONCRETE SOLUTIONS, 2016, : 525 - 530
  • [9] Dynamic powder compaction for parts with high-aspect ratio
    Sukegawa, N
    Sano, T
    Horikoshi, S
    Takeishi, H
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2000, 24 (6-7) : 561 - 570
  • [10] Flutter/LCO suppression for high-aspect ratio wings
    Tang, D.
    Dowell, E.H.
    Aeronautical Journal, 2009, 113 (1144): : 409 - 416