Multipolar fuzzy a-ideals in BCI-algebras

被引:0
|
作者
Rajab Ali Borzooei
Gholam Reza Rezaei
G. Muhiuddin
Young Bae Jun
机构
[1] Shahid Beheshti University,Department of Mathematics, Faculty of Mathematics Sciences
[2] University of Sistan and Baluchestan,Department of Mathematics
[3] University of Tabuk,Department of Mathematics
[4] Gyeongsang National University,Department of Mathematics Education
关键词
-Polar fuzzy subalgebra; -Polar fuzzy ideal; -Polar ; -fuzzy ; -ideal; -Polar ; fuzzy ; -ideal; (Normal) ; -polar ; -fuzzy ; -ideal; 06F35; 03G25; 08A72;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of an m-polar (∈,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,$$\end{document}∈)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in )$$\end{document}-fuzzy a-ideal is introduced, and its properties are investigated. The relationship between m-polar fuzzy subalgebra, m-polar fuzzy ideal, and m-polar (∈,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,$$\end{document}∈)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in )$$\end{document}-fuzzy a-ideal is examined. Conditions for an m-polar fuzzy ideal to be an m-polar (∈,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,$$\end{document}∈)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in )$$\end{document}-fuzzy a-ideal are provided. The relationship between m-polar (∈,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,$$\end{document}∈)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in )$$\end{document}-fuzzy p-ideal, m-polar (∈,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,$$\end{document}∈)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in )$$\end{document}-fuzzy q-ideal, and m-polar (∈,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,$$\end{document}∈)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in )$$\end{document}-fuzzy a-ideal is shown. The normal m-polar (∈,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,$$\end{document}∈)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in )$$\end{document}-fuzzy a-ideal is introduced, and its characterizations are considered. Characterizations and extension property of an m-polar (∈,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\in ,$$\end{document}∈)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in )$$\end{document}-fuzzy a-ideal are discussed.
引用
收藏
页码:2339 / 2348
页数:9
相关论文
共 50 条
  • [1] Multipolar fuzzy a-ideals in BCI-algebras
    Borzooei, Rajab Ali
    Rezaei, Gholam Reza
    Muhiuddin, G.
    Jun, Young Bae
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (08) : 2339 - 2348
  • [2] BIPOLAR FUZZY a-IDEALS OF BCI-ALGEBRAS
    Lee, Kyoung Ja
    Jun, Young Bae
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 26 (04): : 531 - 542
  • [3] Quasi a-ideals in BCI-algebras
    Gilani, Alireza
    [J]. MATHEMATICAL SCIENCES, 2012, 6 (01)
  • [4] Quasi a-ideals in BCI-algebras
    Alireza Gilani
    [J]. Mathematical Sciences, 2012, 6 (1)
  • [5] Multipolar Fuzzy p-Ideals of BCI-Algebras
    Takallo, Mohammad Mohseni
    Ahn, Sun Shin
    Borzooei, Rajab Ali
    Jun, Young Bae
    [J]. MATHEMATICS, 2019, 7 (11)
  • [6] Anti-Intuitionistic Fuzzy Soft a-Ideals Applied to BCI-Algebras
    Muhiuddin, G.
    Al-Kadi, D.
    Balamurugan, M.
    [J]. AXIOMS, 2020, 9 (03)
  • [7] Fuzzy ideals in BCI-algebras
    Liu, YL
    Meng, J
    [J]. FUZZY SETS AND SYSTEMS, 2001, 123 (02) : 227 - 237
  • [8] Applications of soft sets to q-ideals and a-ideals in BCI-algebras
    Han, Jeong Soon
    Ahn, Sun Shin
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (01) : 10 - 21
  • [9] On fuzzy ideals in BCK/BCI-algebras
    Meng, J
    Guo, X
    [J]. FUZZY SETS AND SYSTEMS, 2005, 149 (03) : 509 - 525
  • [10] Generalized Fuzzy Ideals of BCI-Algebras
    Zhan, Jianming
    Jun, Young Bae
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2009, 32 (02) : 119 - 130