On characteristic classes of Q-manifolds

被引:0
|
作者
S. L. Lyakhovich
E. A. Mosman
A. A. Sharapov
机构
[1] Tomsk State University,
关键词
homological vector field; -manifold; characteristic class;
D O I
暂无
中图分类号
学科分类号
摘要
Characteristic classes are defined for supermanifolds equipped with a homological vector field Q. We construct an infinite series of characteristic classes defined in terms of the second covariant derivatives of Q.
引用
收藏
页码:75 / 77
页数:2
相关论文
共 50 条
  • [1] On characteristic classes of Q-manifolds
    Lyakhovich, S. L.
    Mosman, E. A.
    Sharapov, A. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2008, 42 (01) : 75 - 77
  • [2] Characteristic classes of Q-manifolds: Classification and applications
    Lyakhovich, S. L.
    Mosman, E. A.
    Sharapov, A. A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (05) : 729 - 759
  • [3] On Q-manifolds bundles
    Valov, V.
    West, J.
    TOPOLOGY AND ITS APPLICATIONS, 2022, 311
  • [4] Q-Manifolds and Mackenzie Theory
    Voronov, Theodore Th.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (02) : 279 - 310
  • [5] Q-Manifolds and Mackenzie Theory
    Theodore Th. Voronov
    Communications in Mathematical Physics, 2012, 315 : 279 - 310
  • [6] BRICK DECOMPOSITIONS AND Q-MANIFOLDS
    CURTIS, DW
    KOZLOWSKI, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (01) : 170 - 174
  • [7] DEFORMATION OF OPEN EMBEDDINGS OF Q-MANIFOLDS
    FATHI, A
    VISETTI, YM
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 224 (02) : 427 - 435
  • [8] Q-manifolds and Higher Analogs of Lie Algebroids
    Voronov, Th. Th.
    XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS, 2010, 1307 : 191 - 202
  • [9] Homological characterizations of Q-manifolds and l2-manifolds
    Karassev, Alexandre
    Valov, Vesko
    FUNDAMENTA MATHEMATICAE, 2022, : 255 - 269
  • [10] ANRS ADMITTING AN INTERVAL FACTOR ARE Q-MANIFOLDS
    LAY, TL
    WALSH, JJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 73 (02) : 279 - 280