Hybrid Machine Learning Classifier and Ensemble Techniques to Detect Parkinson’s Disease Patients

被引:0
|
作者
Yadav S. [1 ]
Singh M.K. [1 ]
机构
[1] Department of Computer Applications, VBS Purvanchal University, Jaunpur
关键词
Bagging; Clinical outcome; Ensemble; Machine learning; Majority voting; Parkinson’s; SVC;
D O I
10.1007/s42979-021-00587-8
中图分类号
学科分类号
摘要
Parkinson’s disease is caused by tumors, a progressive nervous system disorder that affects development. Stiffness or slow movement is the basic sign of this problem. There is no cure for Parkinson's disease, but some drugs can improve the condition, and sometimes brain surgery can help patients improve their condition. Using machine learning strategies, we developed a priori model to identify patients affected by Parkinson’s disease. By controlling the importance of features, we recognize the most significant indicators of patients who belong to this disease-related estimate. The model-based logic strategies we use include logistic regression (LR), k nearest neighbors (k-NN), support vector classifier (SVC), gradient boosting classifier (GBC), and random forest classifier (RF). The estimated reliability, like the ROC curve and confusion matrix, is five-fold cross-validation. We construct another model that depends on the ensemble method and utilization of majority voting, weighted average, bagging, Ada_boost and Gradient_boosting. The model is also recognized in the five-fold cross-validation and confusion matrix, precision; recall rate and F1 score. The correlation matrix is also drawn to show whether these features are related to each other. Our findings indicate that, compared with different methods, machine learning can provide more reliable clinical outcome assessments for patients with Parkinson’s disease. Among the five algorithms, the higher accuracy fluctuates in the middle of 70–95%. Among them, SVC obtains 93.83% accuracy from the five basic classifiers, and Bagging obtains 73.28% accuracy from the ensemble technique. © 2021, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
引用
收藏
相关论文
共 50 条
  • [1] Parkinson's Disease Data Analysis and Prediction Using Ensemble Machine Learning Techniques
    Mali, Rubash
    Sipai, Sushila
    Mali, Drish
    Shakya, Subarna
    MOBILE COMPUTING AND SUSTAINABLE INFORMATICS, 2022, 68 : 327 - 339
  • [2] Hybrid Machine Learning Methods and Ensemble Voting for Identification of Parkinson's Disease Subtypes
    Salmanpour, Mohammad R.
    Saberi, Abdollah
    Hajianfar, Ghasem
    Rahmim, Arman
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [3] A hybrid system for Parkinson’s disease diagnosis using machine learning techniques
    Rohit Lamba
    Tarun Gulati
    Hadeel Fahad Alharbi
    Anurag Jain
    International Journal of Speech Technology, 2022, 25 : 583 - 593
  • [4] A hybrid system for Parkinson’s disease diagnosis using machine learning techniques
    Lamba, Rohit
    Gulati, Tarun
    Alharbi, Hadeel Fahad
    Jain, Anurag
    International Journal of Speech Technology, 2022, 25 (03) : 583 - 593
  • [5] A hybrid system for Parkinson's disease diagnosis using machine learning techniques
    Lamba, Rohit
    Gulati, Tarun
    Alharbi, Hadeel Fahad
    Jain, Anurag
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2021, 25 (3) : 583 - 593
  • [6] Bio-inspired voting ensemble weighted extreme learning machine classifier for the detection of Parkinson’s disease
    Das P.
    Nanda S.
    Research on Biomedical Engineering, 2023, 39 (03) : 493 - 507
  • [7] Predicting patients with Parkinson's disease using Machine Learning and ensemble voting technique
    Shawki Saleh
    Bouchaib Cherradi
    Oussama El Gannour
    Soufiane Hamida
    Omar Bouattane
    Multimedia Tools and Applications, 2024, 83 : 33207 - 33234
  • [8] Predicting patients with Parkinson's disease using Machine Learning and ensemble voting technique
    Saleh, Shawki
    Cherradi, Bouchaib
    El Gannour, Oussama
    Hamida, Soufiane
    Bouattane, Omar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33207 - 33234
  • [9] Machine learning Ensemble for the Parkinson’s disease using protein sequences
    Priya Arora
    Ashutosh Mishra
    Avleen Malhi
    Multimedia Tools and Applications, 2022, 81 : 32215 - 32242
  • [10] Machine learning Ensemble for the Parkinson's disease using protein sequences
    Arora, Priya
    Mishra, Ashutosh
    Malhi, Avleen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (22) : 32215 - 32242