Secant methods for semismooth equations

被引:0
|
作者
Florian A. Potra
Liqun Qi
Defeng Sun
机构
[1] Department of Mathematics,
[2] University of Iowa,undefined
[3] Iowa City,undefined
[4] IA 52242,undefined
[5] USA; e-mail: potra@math.uiowa.edu ,undefined
[6] School of Mathematics,undefined
[7] The University of New South Wales,undefined
[8] Sydney,undefined
[9] New South Wales 2052,undefined
[10] Australia; e-mail: (Liqun Qi) L.Qi@unsw.edu.au,undefined
[11] (Defeng Sun) sun@alpha.maths.unsw.edu.au ,undefined
来源
Numerische Mathematik | 1998年 / 80卷
关键词
Superlinear Convergence; Secant Method; Convergent Method; Semismooth Equation;
D O I
暂无
中图分类号
学科分类号
摘要
Some generalizations of the secant method to semismooth equations are presented. In the one-dimensional case the superlinear convergence of the classical secant method for general semismooth equations is proved. Moreover a new quadratically convergent method is proposed that requires two function values per iteration. For the n-dimensional cases, we discuss secant methods for two classes of composite semismooth equations. Most often studied semismooth equations are of such form.
引用
收藏
页码:305 / 324
页数:19
相关论文
共 50 条
  • [1] Secant methods for semismooth equations
    Potra, FA
    Qi, LQ
    Sun, DF
    [J]. NUMERISCHE MATHEMATIK, 1998, 80 (02) : 305 - 324
  • [2] A modified secant method for semismooth equations
    Amat, S
    Busquier, S
    [J]. APPLIED MATHEMATICS LETTERS, 2003, 16 (06) : 877 - 881
  • [3] Smoothing methods and semismooth methods for nondifferentiable operator equations
    Chen, XJ
    Nashed, Z
    Qi, LQ
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) : 1200 - 1216
  • [4] Hybrid methods for semismooth nondifferentiable nonlinear equations
    Pieraccini, S
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4A (03): : 527 - 530
  • [5] Semismooth Newton methods for operator equations in function spaces
    Ulbrich, M
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) : 805 - U1
  • [6] Deflation for semismooth equations
    Farrell, Patrick E.
    Croci, Matteo
    Surowiec, Thomas M.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (06): : 1248 - 1271
  • [7] Directional Secant-Type Methods for Solving Equations
    Ioannis K. Argyros
    Saïd Hilout
    [J]. Journal of Optimization Theory and Applications, 2013, 157 : 462 - 485
  • [8] OPTIMAL SECANT-TYPE METHODS FOR OPERATOR EQUATIONS
    Galperin, A.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (02) : 177 - 188
  • [9] Directional Secant-Type Methods for Solving Equations
    Argyros, Ioannis K.
    Hilout, Said
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 157 (02) : 462 - 485
  • [10] Inexact Newton methods for semismooth equations with applications to variational inequality problems
    Facchinei, F
    Fischer, A
    Kanzow, C
    [J]. NONLINEAR OPTIMIZATION AND APPLICATIONS, 1996, : 125 - 139