Unique metric segments in the hyperspace over a strictly convex Minkowski space

被引:0
|
作者
Bogdewicz A. [1 ]
Grzybowski J. [2 ]
机构
[1] Faculty of Mathematics and Computer Science, Warsaw University of Technology, Pl. Politechniki 1
[2] Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614, Poznan
关键词
Convex body; Hausdorff metric; Metric segment; Minkowski space; Strict convexity;
D O I
10.1007/s13366-012-0108-4
中图分类号
学科分类号
摘要
Let (ℝn, {double pipe} ̇ {double pipe}B) be a Minkowski space (finite dimensional Banach space) with the unit ball B, and let ςHB be the Hausdorff metric induced by {double pipe} ̇ {double pipe}B in the hyperspace Kn of convex bodies (compact, convex subsets of ℝn with nonempty interior). Schneider (Bull. Soc. Roy. Sci. Li'ege 50:5-7, 1981) characterized pairs of elements of Kn which can be joined by unique metric segments with respect to ςH-the Hausdorff metric induced by the Euclidean norm {double pipe} ̇ {double pipe}Bn. In Bogdewicz and Grzybowski (Banach Center Publ., Warsaw, 75-88, 2009) we proved a counterpart of Schneider's theorem for the hyperspace (K2,ςHB) over any two-dimensional Minkowski space. In this paper we characterize pairs of convex bodies in Kn which can be joined by unique metric segments with respect to ςHB for a strictly convex unit ball B and an arbitrary dimension n (Theorem 3. 1). © 2012 The Author(s).
引用
收藏
页码:453 / 467
页数:14
相关论文
共 50 条
  • [1] A CONVEX METRIC WITH UNIQUE SEGMENTS
    BING, RH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (01) : 167 - 174
  • [2] On Plis Metric on the Space of Strictly Convex Compacta
    Balashov, Maxim V.
    Repovs, Dusan
    JOURNAL OF CONVEX ANALYSIS, 2012, 19 (01) : 171 - 183
  • [3] LINEARITY IN MINKOWSKI SPACE WITH NON-STRICTLY CONVEX SPHERES
    NITKA, W
    WIATROWS.L
    COLLOQUIUM MATHEMATICUM, 1969, 20 (01) : 113 - &
  • [4] Reflections in strictly convex Minkowski planes
    Horst Martini
    Margarita Spirova
    Aequationes mathematicae, 2009, 78
  • [5] Reflections in strictly convex Minkowski planes
    Martini, Horst
    Spirova, Margarita
    AEQUATIONES MATHEMATICAE, 2009, 78 (1-2) : 71 - 85
  • [6] Geometric algebra of strictly convex Minkowski planes
    Martini, Horst
    Spirova, Margarita
    Strambach, Karl
    AEQUATIONES MATHEMATICAE, 2014, 88 (1-2) : 49 - 66
  • [7] Geometric algebra of strictly convex Minkowski planes
    Horst Martini
    Margarita Spirova
    Karl Strambach
    Aequationes mathematicae, 2014, 88 : 49 - 66
  • [8] When is a Minkowski Norm Strictly Sub-Convex?
    Simon, Stephane
    Verovic, Patrick
    JOURNAL OF CONVEX ANALYSIS, 2024, 31 (01) : 139 - 178
  • [9] A metric space of directions in Minkowski space
    Dekster B.V.
    Journal of Geometry, 2004, 80 (1-2) : 48 - 64
  • [10] WIJS']JSMAN CONVERGENCE IN THE HYPERSPACE OF A METRIC SPACE
    LECHICKI, A
    LEVI, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1987, 1B (02): : 439 - 451