Complementation in the Fremlin vector lattice symmetric tensor products-II

被引:0
|
作者
Donghai Ji
Khazhak Navoyan
Qingying Bu
机构
[1] Harbin University of Science and Technology,Department of Mathematics
[2] University of Mississippi,Department of Mathematics
来源
关键词
Fremlin tensor product; Complementation; Projection band; 46B42; 46M05; 46G25;
D O I
暂无
中图分类号
学科分类号
摘要
For a vector lattice E and n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {N}$$\end{document}, let ⊗¯n,sE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\otimes }}_{n,s}E$$\end{document} denote the n-fold Fremlin vector lattice symmetric tensor product of E. For m,n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m, n \in \mathbb {N}$$\end{document} with m>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m > n$$\end{document}, we prove that (i) if ⊗¯m,sE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\otimes }}_{m,s}E$$\end{document} is uniformly complete then ⊗¯n,sE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\otimes }}_{n,s}E$$\end{document} is positively isomorphic to a complemented subspace of ⊗¯m,sE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\otimes }}_{m,s}E$$\end{document}, and (ii) if there exists [inline-graphic not available: see fulltext] such that ker(ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ker (\phi )$$\end{document} is a projection band in E then ⊗¯n,sE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\otimes }}_{n,s}E$$\end{document} is lattice isomorphic to a projection band of ⊗¯m,sE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\otimes }}_{m,s}E$$\end{document}. We also obtain analogous results for the n-fold Fremlin projective symmetric tensor product ⊗^n,s,|π|E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\otimes }}_{n,s,|\pi |}E$$\end{document} of E where E is a Banach lattice.
引用
收藏
页码:47 / 61
页数:14
相关论文
共 50 条
  • [1] Complementation in the Fremlin vector lattice symmetric tensor products-II
    Ji, Donghai
    Navoyan, Khazhak
    Bu, Qingying
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (01) : 47 - 61
  • [2] Complementation in the Fremlin vector lattice symmetric tensor products-I
    Ji, Donghai
    Navoyan, Khazhak
    Bu, Qingying
    [J]. QUAESTIONES MATHEMATICAE, 2020, 43 (5-6) : 773 - 782
  • [3] Complementation in spaces of symmetric tensor products and polynomials
    Blasco, F
    [J]. STUDIA MATHEMATICA, 1997, 123 (02) : 165 - 173
  • [4] Fremlin tensor products of Banach lattices
    Puglisi, Daniele
    [J]. QUAESTIONES MATHEMATICAE, 2007, 30 (01) : 45 - 56
  • [5] Fremlin tensor products of concavifications of Banach lattices
    Troitsky, Vladimir G.
    Zabeti, Omid
    [J]. POSITIVITY, 2014, 18 (01) : 191 - 200
  • [6] Fremlin tensor products of concavifications of Banach lattices
    Vladimir G. Troitsky
    Omid Zabeti
    [J]. Positivity, 2014, 18 : 191 - 200
  • [7] The Fremlin projective tensor product of Banach lattice algebras
    Jaber, Jamel
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (02)
  • [8] Interpolation of Fremlin tensor products and Schur factorization of matrices
    Defant, Andreas
    Mastylo, Mieczyslaw
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) : 3981 - 3999
  • [9] Lattice tensor products. II
    G. Grätzer
    M. Greenberg
    [J]. Acta Mathematica Hungarica, 2002, 97 : 193 - 198
  • [10] Capillary electrophoresis of natural products-II
    Issaq, HJ
    [J]. ELECTROPHORESIS, 1999, 20 (15-16) : 3190 - 3202