Calculating the Euler Characteristic of the Moduli Space of Curves

被引:0
|
作者
Bodo Lass
机构
[1] Univ Lyon,
[2] CNRS,undefined
[3] Université Claude Bernard Lyon 1,undefined
[4] UMR 5208,undefined
[5] Institut Camille Jordan,undefined
来源
Combinatorica | 2022年 / 42卷
关键词
05C30; 05C10; 05C05; 05C07; 05C15; 05C45; 05A15; 05A19; 05A10; 05A05; 05E05; 05E14; 05E10; 32G15; 14H15; 57R20; 57M15; 20C30;
D O I
暂无
中图分类号
学科分类号
摘要
The orbifold Euler characteristic of the moduli space ℳg;1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal M}_{g;1}}$$\end{document} of genus g smooth curves with one marked point (g ≥ 1) was calculated by Harer and Zagier: χ(ℳg;1)=ζ(1−2g)=−B2g/(2g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ({{\cal M}_{g;1}}) = \zeta (1 - 2g) = - {B_{2g}}/(2g)$$\end{document}, where ζ is the Riemann zeta function and B2g is the (2g)th Bernoulli number. We give a shorter proof of this result using only formal power series and classical combinatorics.
引用
收藏
页码:749 / 762
页数:13
相关论文
共 50 条