Stein’s method for normal approximation in Wasserstein distances with application to the multivariate central limit theorem

被引:0
|
作者
Thomas Bonis
机构
[1] Université Paris-Saclay,DataShape team, Inria Saclay
来源
关键词
Stein’s method; Normal approximation; Wasserstein distances; 60E15; 26D10; 60J05;
D O I
暂无
中图分类号
学科分类号
摘要
We use Stein’s method to bound the Wasserstein distance of order 2 between a measure ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} and the Gaussian measure using a stochastic process (Xt)t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_t)_{t \ge 0}$$\end{document} such that Xt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_t$$\end{document} is drawn from ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} for any t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t > 0$$\end{document}. If the stochastic process (Xt)t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_t)_{t \ge 0}$$\end{document} satisfies an additional exchangeability assumption, we show it can also be used to obtain bounds on Wasserstein distances of any order p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge 1$$\end{document}. Using our results, we provide convergence rates for the multi-dimensional central limit theorem in terms of Wasserstein distances of any order p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge 2$$\end{document} under simple moment assumptions.
引用
收藏
页码:827 / 860
页数:33
相关论文
共 50 条
  • [1] Stein's method for normal approximation in Wasserstein distances with application to the multivariate central limit theorem
    Bonis, Thomas
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 178 (3-4) : 827 - 860
  • [2] STEIN'S METHOD FOR CONDITIONAL CENTRAL LIMIT THEOREM
    Dey, Partha s.
    Terlov, G. R. I. G. O. R. Y.
    ANNALS OF PROBABILITY, 2023, 51 (02): : 723 - 773
  • [3] Multivariate normal approximation using Stein's method and Malliavin calculus
    Nourdin, Ivan
    Peccati, Giovanni
    Reveillac, Anthony
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01): : 45 - 58
  • [4] Improved rates of convergence for the multivariate Central Limit Theorem in Wasserstein distance
    Bonis, Thomas
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 18
  • [5] Multivariate Stable Approximation by Stein's Method
    Chen, Peng
    Nourdin, Ivan
    Xu, Lihu
    Yang, Xiaochuan
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (01) : 446 - 488
  • [6] Multivariate Stable Approximation by Stein’s Method
    Peng Chen
    Ivan Nourdin
    Lihu Xu
    Xiaochuan Yang
    Journal of Theoretical Probability, 2024, 37 : 446 - 488
  • [7] A Central Limit Theorem for Wasserstein type distances between two distinct univariate distributions
    Berthet, Philippe
    Fort, Jean-Claude
    Klein, Thierry
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 954 - 982
  • [8] Stein factors for variance-gamma approximation in the Wasserstein and Kolmogorov distances
    Gaunt, Robert E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [9] Multivariate approximations in Wasserstein distance by Stein's method and Bismut's formula
    Fang, Xiao
    Shao, Qi-Man
    Xu, Lihu
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) : 945 - 979
  • [10] Multivariate approximations in Wasserstein distance by Stein’s method and Bismut’s formula
    Xiao Fang
    Qi-Man Shao
    Lihu Xu
    Probability Theory and Related Fields, 2019, 174 : 945 - 979