Shaken Dynamics: An Easy Way to Parallel Markov Chain Monte Carlo

被引:0
|
作者
Valentina Apollonio
Roberto D’Autilia
Benedetto Scoppola
Elisabetta Scoppola
Alessio Troiani
机构
[1] Università Roma Tre,Dipartimento di Matematica e Fisica
[2] Università di Roma “Tor Vergata”,Dipartimento di Matematica
[3] Università di Padova,Dipartimento di Matematica “Tullio Levi–Civita”
来源
关键词
Probabilistic cellular automata; Parallel dynamics; Ising model; Lattice systems; Monte Carlo combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We define a class of Markovian parallel dynamics for spin systems on arbitrary graphs with nearest neighbor interaction described by a Hamiltonian function H(σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\sigma )$$\end{document}. These dynamics turn out to be reversible and their stationary measure is explicitly determined. Convergence to equilibrium and relation of the stationary measure to the usual Gibbs measure are discussed when the dynamics is defined on Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^2$$\end{document}. Further it is shown how these dynamics can be used to define natively parallel algorithms to face problems in the context of combinatorial optimization.
引用
收藏
相关论文
共 50 条
  • [1] Shaken Dynamics: An Easy Way to Parallel Markov Chain Monte Carlo
    Apollonio, Valentina
    D'Autilia, Roberto
    Scoppola, Benedetto
    Scoppola, Elisabetta
    Troiani, Alessio
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2022, 189 (03)
  • [2] Parallel Markov chain Monte Carlo simulations
    Ren, Ruichao
    Orkoulas, G.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (21):
  • [3] A Quantum Parallel Markov Chain Monte Carlo
    Holbrook, Andrew J.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1402 - 1415
  • [4] Geometry and Dynamics for Markov Chain Monte Carlo
    Barp, Alessandro
    Briol, Francois-Xavier
    Kennedy, Anthony D.
    Girolami, Mark
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5, 2018, 5 : 451 - 471
  • [5] Parallel and interacting Markov chain Monte Carlo algorithm
    Campillo, Fabien
    Rakotozafy, Rivo
    Rossi, Vivien
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (12) : 3424 - 3433
  • [6] PARALLEL MARKOV CHAIN MONTE CARLO FOR SENSOR SCHEDULING
    Raihan, Dilshad
    Faber, Weston
    Chakravorty, Suman
    Hussein, Islam
    [J]. ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 2447 - 2454
  • [7] Markov Chain Monte Carlo from Lagrangian Dynamics
    Lan, Shiwei
    Stathopoulos, Vasileios
    Shahbaba, Babak
    Girolami, Mark
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (02) : 357 - 378
  • [8] Parallel Markov Chain Monte Carlo via Spectral Clustering
    Basse, Guillaume
    Pillai, Natesh
    Smith, Aaron
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1318 - 1327
  • [9] Markov Chain Monte Carlo
    Henry, Ronnie
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [10] Accelerating Global Tractography Using Parallel Markov Chain Monte Carlo
    Wu, Haiyong
    Chen, Geng
    Yang, Zhongxue
    Shen, Dinggang
    Yap, Pew-Thian
    [J]. COMPUTATIONAL DIFFUSION MRI, 2016, : 121 - 130