Self-supervised graph neural network with pre-training generative learning for recommendation systems

被引:0
|
作者
Xin Min
Wei Li
Jinzhao Yang
Weidong Xie
Dazhe Zhao
机构
[1] Northeastern University,School of Computer Science and Engineering
[2] Northeastern University,Key Laboratory of Intelligent Computing in Medical Image (MIIC)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The case assignment system is an essential system of case management and assignment within the procuratorate and is an important aspect of judicial fairness and efficiency. However, existing methods mostly use manual or random case assignment, which leads to unbalanced case distribution. Moreover, the relationship between prosecutors and case categories usually shows a power-law distribution in real-world data. Therefore, in this paper, we describe the case rationality assignment as a recommendation problem under the power-law distributed data. To solve the above problems, we propose an end-to-end Self-supervised Graph neural network model with Pre-training Generative learning for Recommendation (SGPGRec), the main idea of which is to capture self-supervised signals using intra-node features and inter-node correlations in the data, and generate the data representation by pre-training to improve the recommendation results. To be specific, we designed three auxiliary self-supervised tasks based on the prosecutor-case category interaction graph and the data distribution to obtain feature representations of prosecutors, case categories, and the interaction information between them. Then we constructed an end-to-end graph neural network recommendation model by the interaction information based on the data characteristics of the power-law distribution. Finally, extensive experimental consistency on a real-world dataset from three procuratorates shows that our method is effective compared to several yet competing baseline methods and further supports the development of an intelligent case assignment system with adequate performance.
引用
收藏
相关论文
共 50 条
  • [1] Self-supervised graph neural network with pre-training generative learning for recommendation systems
    Min, Xin
    Li, Wei
    Yang, Jinzhao
    Xie, Weidong
    Zhao, Dazhe
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Self-supervised ECG pre-training
    Liu, Han
    Zhao, Zhenbo
    She, Qiang
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [3] Pre-training Graph Neural Network for Cross Domain Recommendation
    Wang, Chen
    Liang, Yueqing
    Liu, Zhiwei
    Zhang, Tao
    Yu, Philip S.
    [J]. 2021 IEEE THIRD INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2021), 2021, : 140 - 145
  • [4] Self-supervised Heterogeneous Graph Pre-training Based on Structural Clustering
    Yang, Yaming
    Guan, Ziyu
    Wang, Zhe
    Zhao, Wei
    Xu, Cai
    Lu, Weigang
    Huang, Jianbin
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [5] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    [J]. SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [6] Self-Supervised Pre-Training with Bridge Neural Network for SAR-Optical Matching
    Qian, Lixin
    Liu, Xiaochun
    Huang, Meiyu
    Xiang, Xueshuang
    [J]. REMOTE SENSING, 2022, 14 (12)
  • [7] Dense Contrastive Learning for Self-Supervised Visual Pre-Training
    Wang, Xinlong
    Zhang, Rufeng
    Shen, Chunhua
    Kong, Tao
    Li, Lei
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3023 - 3032
  • [8] PerFedRec++: Enhancing Personalized Federated Recommendation with Self-Supervised Pre-Training
    Luo, Sichun
    Xiao, Yuanzhang
    Zhang, Xinyi
    Liu, Yang
    Ding, Wenbo
    Song, Linqi
    [J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15 (05)
  • [9] Self-supervised Pre-training for Mirror Detection
    Lin, Jiaying
    Lau, Rynson W. H.
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12193 - 12202
  • [10] Self-supervised Pre-training for Nuclei Segmentation
    Haq, Mohammad Minhazul
    Huang, Junzhou
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 303 - 313