Simultaneous non-vanishing of quadratic Dirichlet L-functions and twists of Hecke L-functions

被引:0
|
作者
Gopal Maiti
机构
[1] Indian Statistical Institute,
来源
Mathematische Zeitschrift | 2023年 / 303卷
关键词
Simultaneous non-vanishing; -functions; 11F11; 11M99;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we study simultaneous non-vanishing of L12,χ8d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\left( \tfrac{1}{2},\chi _{8d}\right) $$\end{document} and L12,f⊗χ8d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\left( \tfrac{1}{2},f\otimes \chi _{8d}\right) $$\end{document}, where χ8d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{8d}$$\end{document} is an even primitive quadratic Dirichlet character modulo 8d (d is odd square-free positive integer) and f is a SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb {Z})$$\end{document} Hecke cusp form of weight k≡0(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\equiv 0 \pmod 4$$\end{document}.
引用
收藏
相关论文
共 50 条