A method to predict the impact of regulatory variants from DNA sequence

被引:0
|
作者
Dongwon Lee
David U Gorkin
Maggie Baker
Benjamin J Strober
Alessandro L Asoni
Andrew S McCallion
Michael A Beer
机构
[1] McKusick-Nathans Institute of Genetic Medicine,Department of Biomedical Engineering
[2] Johns Hopkins University,undefined
[3] Johns Hopkins University,undefined
[4] Present address: Ludwig Institute for Cancer Research,undefined
[5] University of California,undefined
[6] San Diego,undefined
[7] La Jolla,undefined
[8] California,undefined
[9] USA.,undefined
来源
Nature Genetics | 2015年 / 47卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Michael Beer and colleagues report a metric based on a regulatory region annotation method, gkm-SVM, and use this to predict the effects of regulatory variants from sequencing and DNase I–hypersensitive site data. They apply their method to autoimmune disease GWAS data and report several new predictions for causal SNPs.
引用
收藏
页码:955 / 961
页数:6
相关论文
共 50 条
  • [1] A method to predict the impact of regulatory variants from DNA sequence
    Lee, Dongwon
    Gorkin, David U.
    Baker, Maggie
    Strober, Benjamin J.
    Asoni, Alessandro L.
    McCallion, Andrew S.
    Beer, Michael A.
    [J]. NATURE GENETICS, 2015, 47 (08) : 955 - +
  • [2] A sequence-based method to predict the impact of regulatory variants using random forest
    Liu, Qiao
    Gan, Mingxin
    Jiang, Rui
    [J]. BMC SYSTEMS BIOLOGY, 2017, 11
  • [3] A THEORETICAL METHOD TO PREDICT DNA PERMUTATION GEL-ELECTROPHORESIS FROM THE SEQUENCE
    BOFFELLI, D
    DESANTIS, P
    PALLESCHI, A
    RISULEO, G
    SAVINO, M
    [J]. FEBS LETTERS, 1992, 300 (02) : 175 - 178
  • [4] Regulatory variants: from detection to predicting impact
    Rojano, Elena
    Seoane, Pedro
    Ranea, Juan A. G.
    Perkins, James R.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (05) : 1639 - 1654
  • [5] Human cardiac cis-regulatory elements, their cognate transcription factors, and regulatory DNA sequence variants
    Lee, Dongwon
    Kapoor, Ashish
    Safi, Alexias
    Song, Lingyun
    Halushka, Marc K.
    Crawford, Gregory E.
    Chakravarti, Aravinda
    [J]. GENOME RESEARCH, 2018, 28 (10) : 1577 - 1588
  • [6] Structural representations of DNA regulatory substrates can enhance sequence-based algorithms by associating functional sequence variants
    Zrimec, Jan
    [J]. ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [7] DNA sequence variants and the practice of medicine
    Marian, Ali J.
    [J]. CURRENT OPINION IN CARDIOLOGY, 2010, 25 (03) : 182 - 185
  • [8] Analytical tools for identifying DNA variants - Software designed to determine variants from sequence traces
    Liu, CS
    [J]. GENETIC ENGINEERING NEWS, 2003, 23 (17): : 66 - 66
  • [9] Extensive Association of Common Disease Variants with Regulatory Sequence
    Mokry, Michel
    Harakalova, Magdalena
    Asselbergs, Folkert W.
    de Bakker, Paul I. W.
    Nieuwenhuis, Edward E. S.
    [J]. PLOS ONE, 2016, 11 (11):
  • [10] Unipolar depression and hippocampal volume:: Impact of DNA sequence variants of the glucocorticoid receptor gene
    Zobel, Astrid
    Jessen, Frank
    von Widdern, Olrik
    Schuhmacher, Anna
    Hoefels, Susanne
    Metten, Martin
    Rietschel, Marcella
    Scheef, Lukas
    Block, Wolfgang
    Becker, Tim
    Schild, Hans H.
    Maier, Wolfgang
    Schwab, Sibylle G.
    [J]. AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2008, 147B (06) : 836 - 843