Atypical prediction error learning is associated with prodromal symptoms in individuals at clinical high risk for psychosis

被引:0
|
作者
Colleen E. Charlton
Jennifer R. Lepock
Daniel J. Hauke
Romina Mizrahi
Michael Kiang
Andreea O. Diaconescu
机构
[1] Centre for Addiction and Mental Health (CAMH),Krembil Centre for Neuroinformatics
[2] Centre for Addiction and Mental Health (CAMH),Institute of Medical Sciences
[3] University of Toronto,Department of Psychiatry (UPK)
[4] University of Basel,Department of Mathematics and Computer Science
[5] University of Basel,Department of Psychiatry
[6] Douglas Research Centre,Department of Psychiatry
[7] McGill University,Department of Psychology
[8] University of Toronto,undefined
[9] University of Toronto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Reductions in the auditory mismatch negativity (MMN) have been well-demonstrated in schizophrenia rendering it a promising biomarker for understanding the emergence of psychosis. According to the predictive coding theory of psychosis, MMN impairments may reflect disturbances in hierarchical information processing driven by maladaptive precision-weighted prediction errors (pwPEs) and enhanced belief updating. We applied a hierarchical Bayesian model of learning to single-trial EEG data from an auditory oddball paradigm in 31 help-seeking antipsychotic-naive high-risk individuals and 23 healthy controls to understand the computational mechanisms underlying the auditory MMN. We found that low-level sensory and high-level volatility pwPE expression correlated with EEG amplitudes, coinciding with the timing of the MMN. Furthermore, we found that prodromal positive symptom severity was associated with increased expression of sensory pwPEs and higher-level belief uncertainty. Our findings provide support for the role of pwPEs in auditory MMN generation, and suggest that increased sensory pwPEs driven by changes in belief uncertainty may render the environment seemingly unpredictable. This may predispose high-risk individuals to delusion-like ideation to explain this experience. These results highlight the value of computational models for understanding the pathophysiological mechanisms of psychosis.
引用
收藏
相关论文
共 50 条
  • [1] Atypical prediction error learning is associated with prodromal symptoms in individuals at clinical high risk for psychosis
    Charlton, Colleen E.
    Lepock, Jennifer R.
    Hauke, Daniel J.
    Mizrahi, Romina
    Kiang, Michael
    Diaconescu, Andreea O.
    [J]. SCHIZOPHRENIA, 2022, 8 (01)
  • [2] Childhood trauma and prodromal symptoms among individuals at clinical high risk for psychosis
    Thompson, Judy L.
    Kelly, Meredith
    Kimhy, David
    Harkavy-Friedman, Jill M.
    Khan, Shamir
    Messinger, Julie W.
    Schobel, Scott
    Goetz, Ray
    Malaspina, Dolores
    Corcoran, Cheryl
    [J]. SCHIZOPHRENIA RESEARCH, 2009, 108 (1-3) : 176 - 181
  • [3] CORTISOL RESPONSIVITY AND PRODROMAL SYMPTOMS AMONG INDIVIDUALS AT CLINICAL HIGH RISK FOR PSYCHOSIS
    Sugranyes, Gisela
    Thompson, Judy
    Saenger, Renee
    Schobel, Scott
    Singh, Anjuli
    Bodkin, Lauren
    Corcoran, Cheryl M.
    [J]. SCHIZOPHRENIA RESEARCH, 2010, 117 (2-3) : 436 - 436
  • [4] Risk of psychosis in individuals experiencing prodromal symptoms
    Haak, DC
    Perkins, DO
    Graham, KA
    Haak, PP
    Nieri, JM
    Lieberman, JA
    [J]. SCHIZOPHRENIA RESEARCH, 2004, 67 (01) : 33 - 33
  • [5] Duration of untreated prodromal psychosis among individuals with clinical high risk for psychosis
    Zhang, Tianhong
    Xu, Lihua
    Wei, Yanyan
    Tang, Xiaochen
    Hu, Yegang
    Cui, Huiru
    Tang, Yingying
    Wang, Zixuan
    Liu, Haichun
    Chen, Tao
    Li, Chunbo
    Wang, Jijun
    [J]. PSYCHIATRY RESEARCH, 2023, 329
  • [6] Negative symptoms in individuals at clinical high risk of psychosis
    Piskulic, Danijela
    Addington, Jean
    Cadenhead, Kristin S.
    Cannon, Tyrone D.
    Cornblatt, Barbara A.
    Heinssen, Robert
    Perkins, Diana O.
    Seidman, Larry J.
    Tsuang, Ming T.
    Walker, Elaine F.
    Woods, Scott W.
    McGlashan, Thomas H.
    [J]. PSYCHIATRY RESEARCH, 2012, 196 (2-3) : 220 - 224
  • [7] Cannabis Use in Patients at Clinical High Risk of Psychosis: Impact on Prodromal Symptoms and Transition to Psychosis
    van der Meer, Floor J.
    Velthorst, Eva
    Meijer, Carin J.
    Machielsen, Marise W. J.
    de Haan, Lieuwe
    [J]. CURRENT PHARMACEUTICAL DESIGN, 2012, 18 (32) : 5036 - 5044
  • [8] Individualized Prediction of Prodromal Symptom Remission for Youth at Clinical High Risk for Psychosis
    Worthington, Michelle A.
    Addington, Jean
    Bearden, Carrie E.
    Cadenhead, Kristin S.
    Cornblatt, Barbara A.
    Keshavan, Matcheri
    Mathalon, Daniel H.
    McGlashan, Thomas H.
    Perkins, Diana O.
    Stone, William S.
    Tsuang, Ming T.
    Walker, Elaine F.
    Woods, Scott W.
    Cannon, Tyrone D.
    [J]. SCHIZOPHRENIA BULLETIN, 2022, 48 (02) : 395 - 404
  • [9] Prediction of Functional Outcome in Individuals at Clinical High Risk for Psychosis
    Carrion, Ricardo E.
    McLaughlin, Danielle
    Goldberg, Terry E.
    Auther, Andrea M.
    Olsen, Ruth H.
    Olvet, Doreen M.
    Correll, Christoph U.
    Cornblatt, Barbara A.
    [J]. JAMA PSYCHIATRY, 2013, 70 (11) : 1133 - 1142
  • [10] REINFORCEMENT LEARNING IMPAIRMENT AND PRIMARY NEGATIVE SYMPTOMS IN INDIVIDUALS AT CLINICAL HIGH-RISK FOR PSYCHOSIS
    Chang, Wing Chung
    Wo, S. F.
    Wong, C. F.
    Lee, H. C.
    Waltz, James
    Gold, James
    Chan, S. I.
    Chiu, S.
    Lee, H. M.
    Chan, K. W.
    Hui, L. M.
    Suen, Y. N.
    Chen, Eric
    [J]. SCHIZOPHRENIA BULLETIN, 2019, 45 : S222 - S222