Modeling Optimal Age-Specific Vaccination Strategies Against Pandemic Influenza

被引:0
|
作者
Sunmi Lee
Michael Golinski
Gerardo Chowell
机构
[1] Arizona State University,Mathematical and Computational Modeling Sciences Center, School of Human Evolution and Social Change
来源
关键词
Influenza pandemic; A/H1N1 pandemic; Optimal control; Age-specific vaccination;
D O I
暂无
中图分类号
学科分类号
摘要
In the context of pandemic influenza, the prompt and effective implementation of control measures is of great concern for public health officials around the world. In particular, the role of vaccination should be considered as part of any pandemic preparedness plan. The timely production and efficient distribution of pandemic influenza vaccines are important factors to consider in mitigating the morbidity and mortality impact of an influenza pandemic, particularly for those individuals at highest risk of developing severe disease. In this paper, we use a mathematical model that incorporates age-structured transmission dynamics of influenza to evaluate optimal vaccination strategies in the epidemiological context of the Spring 2009 A (H1N1) pandemic in Mexico. We extend previous work on age-specific vaccination strategies to time-dependent optimal vaccination policies by solving an optimal control problem with the aim of minimizing the number of infected individuals over the course of a single pandemic wave. Optimal vaccination policies are computed and analyzed under different vaccination coverages (21%–77%) and different transmissibility levels (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document} in the range of 1.8–3). The results suggest that the optimal vaccination can be achieved by allocating most vaccines to young adults (20–39 yr) followed by school age children (6–12 yr) when the vaccination coverage does not exceed 30%. For higher \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document} levels (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}>=2.4$\end{document}), or a time delay in the implementation of vaccination (>90 days), a quick and substantial decrease in the pool of susceptibles would require the implementation of an intensive vaccination protocol within a shorter period of time. Our results indicate that optimal age-specific vaccination rates are significantly associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{0}$\end{document}, the amount of vaccines available and the timing of vaccination.
引用
收藏
页码:958 / 980
页数:22
相关论文
共 50 条
  • [1] Modeling Optimal Age-Specific Vaccination Strategies Against Pandemic Influenza
    Lee, Sunmi
    Golinski, Michael
    Chowell, Gerardo
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2012, 74 (04) : 958 - 980
  • [2] Optimal strategies of the age-specific vaccination and antiviral treatment against influenza
    Yang, Junyuan
    Yang, Li
    Jin, Zhen
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 168
  • [3] EVALUATION OF AGE-SPECIFIC VACCINATION STRATEGIES
    KATZMANN, W
    DIETZ, K
    [J]. THEORETICAL POPULATION BIOLOGY, 1984, 25 (02) : 125 - 137
  • [4] MODELLING THE STRATEGIES FOR AGE SPECIFIC VACCINATION SCHEDULING DURING INFLUENZA PANDEMIC OUTBREAKS
    Knipl, Diana H.
    Roest, Gergely
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2011, 8 (01) : 123 - 139
  • [5] Age-specific mortality risk from pandemic influenza
    Ma, Junling
    Dushoff, Jonathan
    Earn, David J. D.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2011, 288 : 29 - 34
  • [6] Vaccination strategies to protect children against seasonal and pandemic influenza
    Rimmelzwaan, Guus F.
    Bodewes, Rogier
    Osterhaus, Albert D. M. E.
    [J]. VACCINE, 2011, 29 (43) : 7551 - 7553
  • [7] Optimizing age-specific vaccination
    Fitzpatrick, Meagan C.
    Galvani, Alison P.
    [J]. SCIENCE, 2021, 371 (6532) : 890 - 891
  • [8] Vaccination strategies for an influenza pandemic
    Schwartz, B
    Gellin, B
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2005, 191 (08): : 1207 - 1209
  • [9] OPTIMAL STRATEGIES OF SOCIAL DISTANCING AND VACCINATION AGAINST SEASONAL INFLUENZA
    Shim, Eunha
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2013, 10 (5-6) : 1615 - 1634
  • [10] Finding optimal vaccination strategies for pandemic influenza using genetic algorithms
    Patel, R
    Longini, IM
    Halloran, ME
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2005, 234 (02) : 201 - 212