L-shaped coprime array structures for DOA estimation

被引:0
|
作者
Ahmet M. Elbir
机构
[1] Duzce University,Department of Electrical and Electronics Engineering
关键词
L-shaped arrays; Coprime arrays; Sparse arrays; Direction of arrival estimation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a new sparse array geometry for 2-D (azimuth and elevation) direction-of-arrival (DOA) estimation based on coprime sampling. The proposed array structure is L-shaped coprime array (LCA) whose each portion is one dimensional coprime linear arrays in y- and z-dimensions. Each portion of the array is used separately for 1-D azimuth and elevation angle estimation. In order to obtain the paired DOA estimates the cross-covariance matrix of two portion of the array is utilized and the paired DOA angles are estimated. LCA provides to estimate K≤MN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K \le MN$$\end{document} source directions with 2M+N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2M+N-1$$\end{document} sensors in each portion and totally 4M+2N-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4M+2N-3$$\end{document} sensor elements. The proposed method is evaluated through numerical simulations and its performance is compared with other coprime planar array structures. It is shown that LCA has less computational complexity together with less real sensor elements and it provides superior performance as compared to the conventional 2-D coprime planar arrays.
引用
收藏
页码:205 / 219
页数:14
相关论文
共 50 条
  • [1] L-shaped coprime array structures for DOA estimation
    Elbir, Ahmet M.
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (01) : 205 - 219
  • [2] Coupled Coarray Tensor CPD for DOA Estimation With Coprime L-Shaped Array
    Zheng, Hang
    Shi, Zhiguo
    Zhou, Chengwei
    Haardt, Martin
    Chen, Jian
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1545 - 1549
  • [3] An Efficient 2-D DOA Estimation Method for Unfolded Coprime L-Shaped Array
    Zhang, Qiting
    Li, Jianfeng
    Tang, Yawei
    Deng, Weiming
    Zhang, Xiaofei
    Wu, Qihui
    [J]. IEEE SYSTEMS JOURNAL, 2023, 17 (02): : 3328 - 3331
  • [4] A 2-D DOA Estimation Method With Reduced Complexity in Unfolded Coprime L-Shaped Array
    Zhang, Zhi
    Guo, Yu
    Huang, Yuzhen
    Zhang, Ping
    [J]. IEEE SYSTEMS JOURNAL, 2021, 15 (01): : 407 - 410
  • [5] DOA Estimation for L-Shaped Array Based on Complex FastICA
    Liu, Xiaozhi
    Wang, Chen
    [J]. MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 636 - 639
  • [6] Novel two-dimensional DOA estimation with L-shaped array
    Zhang Xiaofei
    Li Jianfeng
    Xu Lingyun
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [7] Two-Dimensional DOA Estimation Based on L-shaped Array
    Huang Liwei
    Chen Yulin
    Huang Hui
    [J]. 2019 4TH INTERNATIONAL WORKSHOP ON MATERIALS ENGINEERING AND COMPUTER SCIENCES (IWMECS 2019), 2019, : 627 - 632
  • [8] Novel two-dimensional DOA estimation with L-shaped array
    Zhang Xiaofei
    Li Jianfeng
    Xu Lingyun
    [J]. EURASIP Journal on Advances in Signal Processing, 2011
  • [9] L-Shaped Sparse Array Structure for 2-D DOA Estimation
    Wu, Fan
    Cao, Fei
    Ni, Xiaogang
    Chen, Chong
    Zhang, Yanhong
    Xu, Jianfeng
    [J]. IEEE ACCESS, 2020, 8 : 140030 - 140037
  • [10] High Resolution DOA Estimation Algorithm based on Nonuniform L-shaped Array
    Wang, Lanmei
    Chen, Zhihai
    Wang, Guibao
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER SCIENCE AND ENGINEERING (CSE 2013), 2013, 42 : 54 - 58