On edge-transitive metacyclic covers of cubic arc-transitive graphs of order twice a prime

被引:0
|
作者
Xue Wang
Jin-Xin Zhou
Jaeun Lee
机构
[1] Beijing Jiaotong University,School of Mathematics and Statistics
[2] Yeungnam University,Department of Mathematics
来源
关键词
Edge-transitive graph; Arc-transitive graph; Metacyclic ; -group; Normal cover; 05C25; 20B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime, and let Λ2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{2p}$$\end{document} be a connected cubic arc-transitive graph of order 2p. In the literature, a lot of works have been done on the classification of edge-transitive normal covers of Λ2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{2p}$$\end{document} for specific p≤7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\le 7$$\end{document}. An interesting problem is to generalize these results to an arbitrary prime p. In 2014, Zhou and Feng classified edge-transitive cyclic or dihedral normal covers of Λ2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{2p}$$\end{document} for each prime p. In our previous work, we classified all edge-transitive N-normal covers of Λ2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{2p}$$\end{document}, where p is a prime and N is a metacyclic 2-group. In this paper, we give a classification of edge-transitive N-normal covers of Λ2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{2p}$$\end{document}, where p≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 5$$\end{document} is a prime and N is a metacyclic group of odd prime power order.
引用
收藏
页码:111 / 129
页数:18
相关论文
共 50 条
  • [1] On edge-transitive metacyclic covers of cubic arc-transitive graphs of order twice a prime
    Wang, Xue
    Zhou, Jin-Xin
    Lee, Jaeun
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (01) : 111 - 129
  • [2] On arc-transitive metacyclic covers of graphs with order twice a prime
    Huang, Zhaohong
    Pan, Jiangmin
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03):
  • [3] Arc-transitive cyclic covers of graphs with order twice a prime
    Pan, Jiangmin
    Huang, Zhaohong
    Ding, Suyun
    [J]. DISCRETE MATHEMATICS, 2017, 340 (04) : 811 - 816
  • [4] Arc-transitive cyclic and dihedral covers of pentavalent symmetric graphs of order twice a prime
    Feng, Yan-Quan
    Yang, Da-Wei
    Zhou, Jin-Xin
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2018, 15 (02) : 499 - 522
  • [5] ARC-TRANSITIVE PRIME-VALENT GRAPHS OF ORDER TWICE A PRIME POWER
    Pan, Jiangmin
    Li, Cai Heng
    [J]. ARS COMBINATORIA, 2018, 138 : 171 - 191
  • [6] On quasiprimitive edge-transitive graphs of odd order and twice prime valency
    Liao, Hong Ci
    Li, Jing Jian
    Lu, Zai Ping
    [J]. JOURNAL OF GROUP THEORY, 2020, 23 (06) : 1017 - 1037
  • [7] Arc-transitive dihedral regular covers of cubic graphs
    Ma, Jicheng
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03):
  • [8] Arc-transitive abelian regular covers of cubic graphs
    Conder, Marston D. E.
    Ma, Jicheng
    [J]. JOURNAL OF ALGEBRA, 2013, 387 : 215 - 242
  • [9] Edge-transitive cubic graphs of twice square-free order
    Liu, Gui Xian
    Lu, Zai Ping
    [J]. JOURNAL OF GRAPH THEORY, 2024, : 173 - 204
  • [10] Edge-Transitive Regular Metacyclic Covers of the Petersen Graph
    Jiangmin Pan
    Zhaohong Huang
    [J]. Graphs and Combinatorics, 2016, 32 : 777 - 784